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EVALUATION

The work presented in this report represents an effort to press upon
the frontiers of knowledge in the area of spectral estimation, spectral
estimators, and the performance of spectral estimators. To date, no
researcher has developed a tractable means for computing the performance of
a maximum entropy spectral estimator in the presence of noise, even for the
type of noise which is usually most convenient mathematically: Gaussian
noise. We have joined the ranks of these researchers. However, we have
pressed beyond this point of disappointment by simulating the estimator
against noise, signals, and interference, and by composing statistical
analysis of the estimator outputs. These results have been sufficiently

encouraging that an attempt will be made to implement the maximum entropy

spectral estimator in a real time system, and to validate the performance
predicted by the simulation.
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MAXIMUM ENTROPY

SPECTRAL DEMODULATOR INVESTIGATION

1. INTRODUCTION AND OBJECTIVES

A transmitted signal, which is masked by noise and, possi-
bly, interference, is assumed to be a sinusoid with Hertz-
frequency which varies over some finite set F of positive real
numbers. Let "s(t)" denote the value of the resulting continu-
ous-time signal at time t. Of particular interest is the case
where #F = 2; that is, where the frequency switches back and
forth between two distinct values.

The object of this study is to evaluate the performance of
the maximum entropy method (= MEM) of spectral estimation for
short segments of a discrete-time signal which results from
sampling s(t) at uniformly spaced time instants. To be more
specific, it is desired to estimate the uncertainty of the MEM
estimates of the transmitted signal frequencies, by obtaining
confidence intervals, for the cases (a) received signal =
transmitted signal + noise and (b) received signal = transmit-
ted signal + noise + (purposeful) interference.

The simple case (a) with F = {f]} was considered almost
exclusively. The (analytical) problem of obtaining confidence
intervals for f], which requires determining the probability
density function for f]. appears to be intractable. Thus, late

in the program, computer simulation was used to study the




sampling variability of f]. The results of this simulation are

encouraging; the MEM seems to perform quite well.

2. THE MODEL

—

In general, the MEM models functional values as the output
of a linear discrete system (= LDS); that is, as a linear combi-
nation of past functional values (outputs of the LDS) and past
and present inputs to the LOS. This leads to the linear, con-
stant coefficient, difference equation !

q
.Z biu((k‘i)T)g

p
(2.1) f(kT) = - 7 a.f((k-j)T) + G
J i=0

where the 2 and b; are real numbers, b0 df 1, G is the system
gain factor (a positive real number), T is the sampling period
(a positive real number), u((k-1)T) is the input to the LDS at
time (k-1)T, and k is any positive integer such that the func-
tions f and u are defined at the indicated times. As (2.1)
enables one to "predict" f(mT) from f((m-1)T), ... , f((m-p)T),
u(mT), ... , u((m-q)T), the name "linear prediction" is also
associated with this method.

There are several other equivalent representations of a
LDS in addition to the difference equation formulation [1; pp.
85-86]. For frequency-domain considerations, the representa-
tion

S(Z) = H(Z)U(z):

where S(z) and U(z) are the z-transforms of s(kT) and u(kT)
respectively and H(z) is a rational function of z called the

"system transfer function," is useful [1; pp. 220-282]. In

I-6
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general, H(z) will have both zeros and poles.
We model a received signal s by a difference equation of
the form (2.1) with q = 0 and G = 1; that is, we assume
p
(2.2) s(kT) =-3£] ajs((k-j)T) + u(kT)
for all appropriate k. For the model (2.2), it can be shown

that
1

H(z) = A
-J
1 aJ.z

¥ ¥

J

n o

Thus H is an "all-pole" transfer function with p poles, namely,

P
i=
lently (if z # 0, as is required by the definition of the z-

the p solutions of the equation 1 + J ajz'j = 0 or, equiva-

transform),

P p-1 3
(2.3) z" + ayz to.otag gzt 0.

3. ESTIMATION OF MODEL PARAMETERS

The model parameters a;, ... , a, in (2.2) are approximated

by the usual type of least-squares analysis in the time-domain

[2; pp. 563-567]. For a given positive integer m, we predict
s(mT) to be

(3.1) s(mT) df

'a'js((m-j)T),

e o

341

where the 35 are chosen so as to minimize an appropriate function

of the errors

e(kT) df s(KT) - s(kT)

I-7
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for k < m. In the case of a deterministic signal, J e?(kT) is
minimized over some set of previous samples. In case we mini-
mize the sum of squared errors

m-1 N-1

I e2(kT} (= J e2({m-K¢k)T)

k=m-N k=0
corresponding to the preceding N samples, the technique is call-
ed the "covariance method" of linear prediction [2; p. 564].
This leads to the system of linear equations

p

P (3.2) jZ1 33(m.~)¢ij(m,N> = b il R) B~ T, 2, ... . #),

whare, far sl (Yoo 40 vue SBT3, ves’' o B,

N-1
(3.3) ¢ij(m,N) df kZO s((m-N+k-1)T)s((m-N+k-3)T),

for determining the 33 which yield the prediction of s(mT).
From (3.2) and (3.3), we see that the N + p consecutive samples
s((m-N-p)T), ... , s((m-1)T) are needed. Thus if we do not
allow negative arguments, s((N+p+1)T) is the first sample we
can predict.

In making the prediction (3.1), we are assuming that the

input u(mT) is completely unknown, which is often the case.

4. THE ANALYTICAL APPROACH

The analytical determination of the frequencies f,i e F
exhibited by the transmitted signal involves (a) calculating the

¢ij(m,N) from (3.3), (b) solving the system of linear equations




(3.2) for the 33. (c) solving the polynomial equation (2.3)

with “33“ in place of "a;", (d) determining e, in the polar
form riexp(:Jei) of each of the complex conjugate pairs of
roots of (2.3), and (e) multiplying the 0, by an appropriate
real number to obtain the fi.

As indicated in Section 1, an attempt was made to handle

analytically the simple case of a single frequency (F = {f]})

signal in noise with no interference; that is, we assume the

transmitted signal is
(4.1) Asin(2nf1t)
and that the received signal is

s(t) = Asin(an]t) + n(t),

where n(t) is a zero-mean Gaussian noise process [3; pp. 219-
222] which is uncorrelated with the transmitted signal and for

which
02 (k = 0),

Eln(t)n(t+k)] = {’0 (k £ 0).

Thus the samples of s are given by

(4.2) s(kT) = A sin(2nf]kT) + n(kT).

In this case, a 2-pole model (p = 2) suffices.

The roots of (2.3) with p = 2 and "3}" in place of "aj"
are z; df (-a; + /d)/z and zy 2£=(-33 - /d)/2, where d df 3}2 -

43}. It can be shown that the radian argument in the polar form

of z, is the radian-frequency 3 in (4.2). (In fact, this poten- 3




f tial for ferreting out the frequencies of a sinusoidal signal

is the reason linear prediction is useful to us, rather than

its predictive powers. We can always "wait" T seconds and
measure s(mT).) Thus, as f > 0, z, must be a non-real(complex)

number; that is, we must have 3}2 - 43} < 0. Hence we have

2] = -(a /2) + (Y 4 a,%)/2, ]

~

where 43} - a]2 > 0. It is easy to show that z_  has polar form

1

r]exp(dd]), where
(4.3) s v a
2
and n/2 (a; = 0),
(4.4) o, = “(-/ By - a2/ ¢ v {5 > 0,
] ~
(- a, - a /a]) (a] < 0).

If we measure frequencies in Hertz and require that F < (0,6000),

then

(4.5) (6000/n)e,

Now, 3} and 3} in the expression for f] can be obtained

explicitly by solving the system of equations (3.2) with p = 2.

By Cramer's Rule, we have

|
(4.8 a) = (89007 = 950090/ 1
and
it Ay = (ogy00y = 9gp0qy /0
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where

(4.8) PP P IR S PIPY

and the ¢ij are given by (3.3) and involve the s(kT) as given by
(4.2). Even in this very special case, the complicated chain of
operations linking the assumptions about the transmitted signal
and the noise with the frequency f1 makes it difficult to deter-
mine the probability density function for f,.

In case #F = 2, a 4-pole model is appropriate and the equa-
tion (2.3) is guartic. The four roots of a quartic equation can
be given explicitly in terms of radicals and the coefficients
Ays o 34; however, the expressions for these roots are
extremely complicated. Of course, if #F > 2, a model with at
least six poles is required and no analog of the quadratic and
quartic formulas exists for the equation (2.3) in such cases.

Thus, for these cases, we can not mimic the treatment of the

2-pole case.

5. THE COMPUTER SIMULATION

The first part of the program involved an extensive inves-
tigation of linear prediction techniques and their application
to communications theory [1]. This investigation included the
analytical effort described in Section 4. The second part of
the program involved the development of a computer simulation

to determine the sampling variability of the f].
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In Sections 1 and 4, we did not elaborate on the term
"noise." Noise is a fundamental limitation on the performance
of physical systems such as radar devices. Some possible
sources of noise are clutter, cosmic radiation, and thermal
motion of the electrons and ions in the receiver components
and the antenna surroundings [3; pp. 3-5].

There are other limitations on performance in signal-
processing that are based on the fact that the values of vari-
ables in models of real-world systems are, typically, real
numbers with decimal representations which are non-termina-
ting or terminate only after a large number of digits, whereas,
digital signal-processing equipment (which for various reasons
has largely supplanted analog equipment) seldom allows repre-
sentations of numbers (or other symbols) with more than 64
precision bits. One such limitation, "quantization noise,"
results from use of an analog-to-digital converter (= ADC) in
sampling the continuous-time signal. Another, "roundoff (or
chopping) noise," results from rounding (or chopping) sums and
products to fit the computer's word length.

In the simulating done to date, an effort has been made to
assess the sampling variability due to quantization noise and
roundoff noise. Such noise is always present as we can not do
infinite-precision sampling and arithmetic. Further work is
needed to determine the effect of purposeful man-made interfer-
ence and the type of noise cited in the second paragraph of this

section. Also, we have considered only the 2-pole model dis-

cussed in Section 4.




Some features of the simulation which 100k peculair owe to

the fact that, previously, some processing of actual signals was

done at RADC. An 8-bit ADC was used to produce 8-bit approxima-

i tions of signal values and blocks of 2048 of these were stored

on magnetic tape.

\

its interpretation:
TSA (T)
F1 (f1)
A (A)
NP (p)
N (N)
NN (= N + p)

NB ()
S(J) (s(3iT))
P(1,9) (¢ij(m,N))

PO(1) (og;(m,N))
R(K) (ry)

F(K) (fy)

FC ()

DEL (a)

Al (3})

Later, this information was computer-process-
ed. The programs used in the present study include portions of
\the previously-used program.

| Below is a list of key variables in the simulation programs

along with the corresponding variable (if any) in Section 4 and

sampling period (1/12000 sec.);
Hertz-frequency of the transmitted signal;
amplitude of the transmitted signal

number of poles;

number of error terms in the minimization
process for determining the prediction

coefficients 33 in (3.1);

the number of previous samples needed to
predict s(mT)

number of ADC bits;
value of the received signal at time jT;

coefficient of 33 in equation i of the
linear system (3V2), ¢ 1s defined in (3.3);

constant on the right in equation i of
the linear system ?3.2). ¢ Is defined in (3.3);

magnitude of the root of (2.3) in the
upper half-plane;

Hertz-frequency corresponding to the root
of (2.3) in the upper half-plane;

the radian-Hertz conversion factor 6000/x
in (4.5);

%he ?ﬁterminant of the system (3.3) (see
4.8));

coefficient in equation (2.3) with p = 2;

TS RSS F RS YIRS 4 -
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A2 (a2) coefficient in equation (2.3) with p = 2;

AM arithmetic mean of F df {f(mT): m e
£8s Ty vos. 2. 2D4B));
SD standard deviation of F, the frequencies

We assume henceforth that the amplitude A (measured in volts)
of the transmitted signal is in [-5, 5]. In the simulation of
the ADCs behavior, the signal S(J) in the interval [-5, 5], of
length 10, is mapped into the integer interval [-2NB-1, ZNB‘I]
by following xuf—+(2NB/10)x by chopping to an integer, and the
integer is mapped back into a computer real number in [-5, 5] by
x»—a(IOIZNB)x.

In a certain average sense, binary representations of numbers
have 1092(10) (= 3.32) times as many symbols as do the correspond-
ing decimal representations when both representations terminate.
Thus it was apparent to the writer that the 8-bit ADC was not
adequate for dealing with frequencies in (0, 6000).

One of the programs used in the simulation appears in the
Appendix. Its purpose is to determine the effect of the number
of ADC bits on the performance of the model. The results, given
in Table 1, of executing this program confirm the conclusion

about the inadequacy of the 8-bit ADC.




: This program uses 5 samples (N=3, p=2) to form each estimate

.,

of the frequency (f]). The frequency is estimated 2043 times,
using 2048 samples. These samples are generated with a specified
number of bits of ADC precision (NB ) using the procedure outlined
previously. The mean (AM) and standard deviation (SD) are

computed in subroutine STATS from the 2043 frequency estimates

using the following formulas:

2083
AM = —5a3— L fy
i=]
2043
SD =

] 2
(f, - 3250)
2043 izi !

Table 2 shows the variation of AM and SD with N, the number
of error terms used in the minimization. In the case NB = 14,
central processor (= CPU) time is given also. These times include
the execution time for the statistical calculations. Thus absolute
differences are meaningful to the determination of the effect on

execution time of changing the value of N, whereas relative




TABLE 1

Mean AM and standard deviation SD of predictions for
the number of ADC bits NB = 2, 3, ... , 16, 27* with
A=1.5, N= 3, and F1 = 3250.

NB AM SO

2 6000.0000 2749.9994

3 3497.7974 1677.3801

4 3252.4888 226.23133

5 3248.9677 78.865247

6 3249.5983 33.414235

7 3249.6557 21.808373

8 3249.9485 11.663445

9 3249.9887 4.8569507
10 3249.9991 2.4628091
1 3250.0001 0.77203118
12 3250.0004 0.22295413
13 3249.9985 0.18255417
14 3249.9960 0.15308648
15 3250.0002 0.075419844
16 3250.0008 0.034125918
27 3250.0001 0.0066758151

differences are not. It appears that adding 1 to the value of N
increases execution time by approximately (1/3)(0.C001) hr. or
0.12 sec. Nofe that execution of the program involves 2043

(= 2048 - (3 + 2)) calculations of an f Fhus the added time

]\
for calculation of each value of fy is approximately 5.10°5 sec.
Execution times are of interest as the ultimate goal is real-

time implementation of the model.

*Here we have used 27 precision-bit floating-point representations

and arithmetic with the ADC simulation portion of the program
deleted.

o
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TABLE 2

Mean AM and standard deviation SD
the number of error terms used in
, 12 with A = 1.5, F1

of predictions for
the minimization N
= 3250, and NB = 8,

P————

16, and 27.
NB =
AM SD

2 3250.0737 5.632812

3 3249.9485 1.663445

4 3249.9371 9.3071191

5 3249.8821 7.1128755
6 3249.8813 6.0597079
7 3249.8710 5.2067635
8 3249.8677 4.4239790
9 3249.8625 3.3021908
10 3249.8594 2.8550067
11 3249.8582 2.2166742
12 3249.8565 2.0223015

NB =

N AM SD

2 3250.0018 2.9927573
3 3249.9991 2.4628091

4 3249.9970 2.0885355
5 3249.9975 1.7026238
6 3249.9979 1.6084557
7 3249.9978 1.2938950
8 3249.,9922 1.0680774
9 3249.9925 0.73630817
10 3249.9945 0.56215978
11 3249.9921 0.39859506
12 3249.9906 0.35790581
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NB = 12

AM SD

3249.9978
3250.0004
3250.0015
3250.0015
3250.0001
3250.0009
3249.9994
3250.00N
3250.0009
3249.9999
3250.0009

.28106676
.22295413
.14402156 ;
.13972569
.081098709
.067171544
.059041822
.044649824
.047537731
.052555363
.046175324

OO0O0O0O0O0O0O0O0O0O0O

— ot
N—=0OWONODBWN

NB = 14

AM SD CPU TIME

=z

3249.9988
3249.9960
3249.9997
3249.9983
3249.9958
3249.9998
3249.9980
3249.9972
3250.0021
3249.9973
3250.0007

.21686259
.15309648
.11826708
.10109097
.066045111
.059400090
.052958412
.032415771
.037008012
.038732876
.033104122

.0009
.0009
.0010
.0010
.0010
.0011
.00
L0011
.0012
.0012
.0012

N~O0OWVONOOHEWN
OO0 O0O0OO0OOO0O0O0O0
OO0 O0O0COO0OO0OO0O0O0O

—t o= —




NB = 16

N AM SD

2 3249.9999 0.045065880
3 3250.0008 0.034125918
4 3249.9995 0.024391433
5 3249.9991 0.021149200
6 3250.0010 0.019371934
7 3249.9993 0.015833400
8 3249.9985 0.013296252
9 3249.9994 0.011714947
10 3249.9999 0.010651756
1M 3249.9995 0.0083492643
12 3250.0000 0.0071696392

NB =

N AM SD

2 3250.0003 0.0087628514
3 3250.0001 0.0066758151
4 3250.0000 0.0042304078
5 3250.0000 0.0027758344
6 3250.0000 0.0017828080
7 3250.0000 0.0020461476
8 3250.0000 0.0021599298
9 3250.0000 0.0019517387
10 3250.0000 0.0015333511
11 3250.0000 0.00091071260
12 3250.0000 0.0010223139
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The next table shows the variation of AM, SD, and the
signal-to-(quantization and roundoff) noise ratio SNR, given

by zo-log,o(z"BA/10), with A.

TABLE 3

Mean AM, standard deviation SD, and signal-to-(quan-

tization and roundoff) noise ratio SNR for the ampli-

tude of the transmitted signal A = 0.5, 1.0, 1.5, ...
5.0 with N = 3, F1 = 3250, and NB = 10, 12, 14, and 16.
NB = 10
AM SD SNR
1 0.5 3249.9668 6.9402777 34.185400
3 1.0 3249.9982 2.0219451 40.205999
1.5 3249.9991 2.4628091 43.727824
2.0 3249.9991 1.5623139 46.226599
2.5 3249.9962 1.5531899 48.164799
3.0 3250.0001 0.77203118 49.748425
3.5 3250.0002 1.3622908 51.087360
4.0 3250.0012 0.72204416 52.247199
4.5 3250.0019 0.42808743 53.270249
5.0 3249.9961 0.98476960 54.185400
NB = 12
AM SD SNR
3.5 3249.9991 1.5623139 46.226599
1.0 3250.0012 0.72204416 52.247199
1.5 3250.0004 0.22295413 55.769024
2.0 3249.9994 0.53745331 58.267799
2.5 3249.9979 0.44305741 60.205999
3.0 3249.9985 0.18255417 61.789624
3.5 3250.0007 0.20943003 63.128560
4.0 3249.9981 0.27760254 64.288399
4.5 3250.0016 0.16504455 65.311449
5.0 3250.0001 0.16447618 66.226500
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NB = 14

A AM SD SNR

0.5 3249.9994 0.53745331 58.267799

1.0 3249.9981 0.27760254 64.288399

1.5 3249.9960 0.15309648 67.810224

2.0 3250.0001 0.12638791 70.308999

2.5 3250.0036 0.086964880 72.247199

3.0 3250.0002 0.075419844 73.830824

3.5 3249.9987 0.056363066 75.169760

4.0 3250.0002 0.056470926 76.329598

4.5 3250.0023 0.025813821 77.352649 ;
5.0 3249.9998 0.049159881 78.267799

i NB = 16

A AM SD SNR

J.5 3250.0001 0.12638791 70.308999

1.0 3250.0002 0.056470926 76.329598

1.5 3250.0008 0.034125918 79.851424

2.0 3249.9998 0.033097830 82.350199

2.5 3250.0016 0.024226625 84.288399

3.0 3250.0005 0.017549278 85.872024 1
3.5 3249.9992 0.021185211 87.210959 i
4.0 3249.9992 0.018053080 88.370798 ]
4.5 3250.0004 0.015683560 89.393849 :
5.0 3249.9998 0.015091892 90.308999

Table 4 shows the variation of AM and SD with the frequency %
F1 of the transmitted signal. As there are 14-bit ADCs avail-
able commercially and model performance is quite good with NB =
14 according to Table 1, we let NB = 14.
The strange variation of SD with F1 results from the sam-
pling process and finite precision arithmetic. As the possible

signal frequencies are less than 6000 Hz., we must sample at the
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E TABLE 4

Mean AM and standard deviation SD of predictions for

F1 = 125, 250, 375, ... , 5875 with NB = 14, N = 3,
and A = 1.5.

F1 AM SD

125 119.24084 36.594588
250 249.51668 13.343529
375 374.99050 2.1931926
500 499.99242 2.2354304
625 624.99677 1.6018316
750 750.00167 0.41421278
875 874.99947 0.93162946
1000 999.99837 0.73667024
1125 1124.9997 0.35508527
1250 1250.0013 0.36510814
1375 1374.9998 0.33071683
1500 1499.9985 0.24333926
1625 1624.9985 0.24277011
1750 1750.0004 0.10973179
1875 1875.0006 0.10363140
2000 2000.0000 0.
2125 2124.9995 0.18358279
2250 2250.0019 0.073796298
2375 2375.0001 0.21530845
2500 2499.9964 0.090456136
2625 2625.0006 0.12147366
2750 2750.0028 0.15310039
2875 2875.0002 0.18313020
3000 3000.0000 0.
3125 3124.9978 0.18266767
3250 3249.9960 0.15309648
3375 3374.9995 0.12147751
3500 3500.0056 0.090457460
3625 3625.0008 0.21415340
3750 3749.9958 0.073787051
3875 3874.9984 0.18436528
4000 4000.0000 b
4125 4124.9997 0.10363143
4250 4249.9976 0.10972426
4375 4374.9999 0.24238029
4500 4499,9988 0.24332672
4625 4624.9993 0.33069280
4750 4750.0037 0.36511440
4875 4875.0005 0.35509441
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F1 AM SD

5000 4999.9958 0.73666593
5125 5124.9982 0.90562031
5250 5250.0022 0.41419801
5325 5375.0008 1.5328385
5500 5500.0052 2.2354247
5625 5625.0086 2.1931942
5750 5750.4873 13.343526
5875 5880.7836 36.559757

rate of at least 12000 samples per second according to the Sam-
pling Theorem [1; p. 291]. Thus we are led to letting T =
1/12000. For F1 = 2000 (respectively, 3000, 4000), we have a df
2knF1/12000 = kw/3 (respectively, kn/2, 2kn/3) and sin(a) = .50
(respectively, 1.0, .50) in exact arithmetic. As the library
SIN function is accurate to 8 decimal digits, sin(a) is exact
and 1.5sin(a) is also exact with two significant decimal digits.
In these cases, it can be shown that the first step in the simu-
lation of the ADCs behavior leads to an integer if NB = 14; thus
the ADC simulation leads to the exact frequency F1 as the pre-
dicted frequency. Thus, the value 0 for SD in case F1 = 2000,
3000, or 4000 is explained. Similar reasons for other irregu-
larities can be given.

The program leading to Table 4 was executed with F1 ranging
from 125 to 5875 by steps of 25; however, for obvious reasons
not all of these values appear in the table. The original at-
tempt at execution for F1 ranging from 25 to 5975 lead to execu-

tion-time errors. Further work showed that the trouble begins
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somewhere in the intervals [100, 125) and (5875, 6000). Obvi-
ously, as F1 approaches 0t (60007), the radian measure of N
in (4.4) must approach 0% («=). Thus the discriminant d df
432 - a)° must approach 0 in both cases. Printing values of
some intermediate variables for the bad cases showed that d
took on negative values with increasing frequency as Fl got
closer and closer to 0% (60007). Quantization and roundoff
noise had taken its toll.

The next table shows the variation of AM and SD with block
size. Ultimately, a block size smaller than 2048 may be used.
We note that the performance of the model is reasonably uni-

form over block size.
TABLE 5

Mean AM and standard deviation SD of predictions for
block size = 8, 16, 32, 64, 128, 256, 512, 1024, and
2048 with NB = 14, F1 = 3250, and A = 1.5,

BLOCK SIZE AM SD

8 3249.9163 0.10430552

16 3249.9741 0.19046609

32 3249.9507 0.14852447

64 3249.9952 0.16077075

128 3249.9980 0.15215203

256 3249.9989 0.15498016

g1 3250.0002 0.15291365
1024 3249.9998 0.15360796
2048 3249.9960 0.15309648

Finally, relative frequencies and cumulative relative fre-

quencies of the predictions were obtained in the absence of the




probability density function (= PDF) and the distribution

function (= DF).

TABLE 6

Approximations of the probability density function
PDF and the distribution function DF of the predic-
tions with NB = 14, N = 3, A = 1.5, and F1 = 3250.

PREDICTION APPROX. PDF APPROX. DF
INTERVAL ON INTERVAL AT RIGHT
3249.45-3249.50 0.041605482 0.041605482
3249.50-3249.55 0. 0.041605482
3249.55-3249.60 0. 0.041605482
3249.60-3249.65 0. 0.041605482
3249.65-3249.70 0. 0.041605482
3249.70-3249.75 0. 0.041605482
3249.75-3249.80 0.16691140 0.20851689
3249.80-3249.85 0. 0.20851689
3249.85-3249.90 0.083700441 0.29221733
3249.90-3249.95 0.16691140 0.45912873
3249.95-3250.00 0.20802741 0.66715614
3250.00-3250.05 0. 0.66715614
3250.05-3250.10 0.16642193 0.83357808
3250.10-3250.15 0.083210965 0.91078904
3250.15-3250.20 0.083210965 1.00000000

The "grainy" nature of the above results is again the effect
of quantization and roundoff.
the program was run again with the quantization portion missing

so that 27-bit floating-point representations and arithmetic

prevail.
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TABLE 7

Approximations of the probability density function
PDF and the distribution function DF of the predic-
tions with N = 3, A = 1.5, F1 = 3250, and 27-bit
floating-point representations and arithmetic.

PREDICTION APPROX. PDF APPROX. DF
INTERVAL ON INTERVAL AT RIGHT
3249.985-3249.990 0.12922173 0.12922173
3249.990-3249.995 0.0£1742535 0.21096427
3249.995-3250.000 0.28995937 0.49192364
3250.000-3250.005 0.36514929 0.85707294
3250.005-3250.010 0.064121390 0.92119432
3250.010-3250.015 0.042094959 0.95790504
3250.015-3250.020 0.042094959 1.00000000

6. CONCLUSIONS AND RECOMMENDATIONS

As indicated earlier, the problem of obtaining confidence
intervals for the fi ¢ F appears to be intractable, even for the
simple case of a single-frequency signal (F = {f1}) in noise.
However, simulation of the single-frequency case, with the
only noise being quantization and roundoff noise, has shown
that the MEM performs quite well in terms of sampling variabil-
ity of f].

If results similar to those in Table 1 hold for the two-
frequency signal simulation and the frequencies differ by, say,
50 Hz., it is obvious (as SD = 11.7) that an 8-bit ADC is inade-
quate and that an ADC giving 12-16 bits is desirable. A catalog
search has shown that 12-bit ADCs with 2usec. sampling time and
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and 14-bit ADCs with 50 usec. sampling time are available com-
mercially.

From Table 2 with NB = 14, we see that model behavior is
good with N = 3 but that SD can be decreased by a factor of
approximately 4/5 (that is, to 1/5 of its value for N = 3) by
increasing N to 12 at the cost of increasing CPU time by a fac-
tor of approximately 1/3. If the single-frequency case were
of practical interest, it would not seem desirable to increase
N in view of the desire to operate in real-time and the good
performance of the model with N = 3 (and NB = 12-14).

From Table 3 with NB = 12 (or 14), we see that model per-
formance is good with transmitted signal amplitude A = 1.5,
However, SD can be decreased by a factor of approximately 3/4
(or 5/6) by increasing A to 4.5.

From Table 4, we see that model performance is quite good
for fy ¢ (1000, 5000) but deteriorates rapidly as f] approaches
o* and 6000°. Again, if similar results hold for the two-fre-
quency signal case, values of f1 and f2 in [1500, 4500] would
give excellent results.

Table 5 shows that model performance is quite uniform and
good for block sizes ranging from 128 to 2048. Thus a reduction
of block size to the vicinity of 128, as is anticipated, will
not adversely effect results.

There remains a substantial amount of work to be done in
assessing the performance of the MEM in case #F > 2. In the

two-frequency signal case, operation counting shows that Gauss
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elimination is decidedly superior to use of Cramer's Rule.
Also, it is likely that use of some iterative algorithm for
finding polynomial roots is better than use of the quartic
formula (which generally requires use of the cubic formula)
for solving (2.3) with p = 4. Of course, for #F > 3 (p > 6)
no formula exists for solving (2.3). A substantial portion

of the computing time is required by the COV subroutine,

which is probably as efficient as is possible. With the real-
time goal in mind, it is vital that the most efficient algo-

rithms for solving linear systems and polynomial equations be

found.
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APPENDIX

CMETA PROGRAM META
DOUBLE PRECISION TSA,TPI,TC,Wl
COMMON/ SAMP/S (2048)
COMMON/FREQ/F (2048)
COMMON/RMAG/ R(2048)
; COMMON/ PKI/ P (2,2)
‘ COMMON/ PKHO/ PO (2)
: COMMCN/ TFRWY/F1
C ASSIGN VALUES TO VARIABLES
DATA TSA,TPI/83.3333333333333333D-6,6,28318530717958647/
DATA PI,FC,F1l/3.14159265,1909,85931,3250,/
DATA KU,A,NP,N,AM,SD/2048,1.5,2,3,0,,0,/
NN=NP+N
KL=NN+1
LOOP TO CALCULATE AND PRINT PREDICTED FREQUENCIES FROM (4.4) AND
(4.5)AND MEAN AND STANDARD DEVIATION THEREOF FOR NUMBER OF BITS =
- P SR o
DO 5 NB=2,16
WRITE (6,200) NB
200 FORMAT (l1l8H NUMBER OF BITS = ,13//)
C CALCULATE EXACT TRANSMITTED SIGNAL VALUE FROM (4.1)
wl=Fl*TPI
DO 10 J=1,2048
FJ=J-1
TC=FJ*TSA
TS=W1l*TC {
10 S(J)=A*SIN(TS)
c SIMULATION OF ADC QUANTIZATION OF THE SIGNAL $
NBP=2**\B ]
PNB=NBP
DV=10./ PNB
DVI=PNB/10.
DO 15 J=1,2048
X=s (J)
X=X*DVI
KP=X
X=KP
15 S (J)=X*DV
C CALCULATE COEFFICIENTS FOR AND SOLVE LINEAR SYSTEM (3.2) USING
c (4.6)=(4.8)
DO 20 K=KL,KU -
KK=K
CALL COV (NP, NN, KK)
DEL=P(1,1)*P(2,2)=P(1l,2)*P(2,1)
Al=(pP(l,2)*PO(2)=-PO(l)*P(2,2))/DEL
A2=(P(2,1)*PO(l)-PO(2)*P(1,1))/DEL
CALCULATE AND PRINT PREDICTED FREQUENCY
F (K)=FC*ARCTA (=Al, SQRT (4*A2-Al1*Al))
R(K)=SQRT(A2)
WRITE (6,300) K,R(K),F(K)
FORMAT (1X,18,2G20,8)

nnn
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c CALCULATE AND PRINT MEAN AND STANDARD DEVIATION OF PREDICTIONS
CALL STATS (AM,SD,KL,KU)
5 WRITE (6,400) AM,SD
400 FORMAT (1X,2G20.8//7) |
STOP

END
SUBROUTINE COV(NP,NN,LP)
COMMON/ SAMP/ S (2048)
COMMON/ PHI/ P (2,2)
COMMON/ PHO/ PO (2)
CALCULATE THE PHI(I,J) OF (3.3) |
CALCULATE DIAGONAL ELEMENTS, PHI(J,J), OF COVARIANCE MATRIX - -
ASSIGN TC P(J,J)
L=LP-1
NI=NN-NP
NL=LP-NI
B=0,
DO 5 J=NL,L
S B=B+*S(J)*s (J)
DO 10 J=1,NP
K=LP-J
_ I=NL-J
1 B=B+S(I)*sS(I)=S(K)*sS (K)
| 10 P(J,Jd)=B
v € CALCULATE REMAINDING PHI(I,J)
DO 15 KK=1,NP
B=0,
c CALCULATE PHI(U,KK) = ASSIGN TO PO(KK)
DO 20 J=1,NI
N=LP-J
M=N- KK
20 B=B+S (N)*sS (M)
PO (KK)=B
c CALCULATE PHI(I,J),J-I=KK,l<I<KNP-1l,2<J<NP = ASSIGN TO P(I1,J)
IF (KK.EQ.NP) GO TO 15
DO 25 K=1, NP-KK
1=K
J=KK+K
N=LP-K
M=N- KK
N1=NL=-K
M1=N1l-KK
B=B*S (N1)*S(M1l)=S (N)*S (M)
P(1,J)=B
25 P(J,1)=B
c THE PREVIOUS STATEMENT TAKES ADVANTAGE OF SYMMETRY OF
c COVARIANCE MATRIX
15 CONTINUE
RETURN

onn

END
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APPENDIX

PROGRAM META
DOUBLE PRECISICN TSA,TPI,TC,Wl
COMMON/ SAMP/S (2048)
COMMON/FREQ/F (2048)
COMMON/RMAG/ R(20485)
COMMON/ PHI/ P (2,2)
COMMON/ PKO/ PO (2)
COMMCN/ TFRWF1
ASSIGN VALUES TO VARIABLES
DATA TSA,TPI/83,3333333333333333D-6,6,28318530717958647/
DATA PI,FC,F1l/3,14159265,1909,85931,3250,/
DATA KU,A,NP,N,AM,SD/2048,1,5,2,3,0,,0./
NN=NP+N
KL=NN+1
LOOP TO CALCULATE AND PRINT PREDICTED FREQUENCIES FROM (4.4) AND
(4.5)AND MEAN AND STANDARD DEVIATION THEREOF FOR NUMBER OF BITS =
2' 3[ o0 '16
DO 5 NB=2,16
WRITE (6,200) NP
FORMAT (1l8H NUMBER CF BITS = ,I13//)
CALCULATE EXACT TRANSMITTED SIGNAL VALUE FROM (4.1)
Wl=Fl*TPI
DO 10 J=1,2048
FJ=J-1
TC=FJ*TSA
TS=wWl*TC
S(J)=A*SIN(TS)
SIMULATION OF ADC QUANTIZATION OF THE SIGNAL
NBP=2**NB
PNB=NBP
DV=10./ PNB
DVI=PNB/10.
DO 15 J=1,2048
X=s (J) 3
X=X*DVI
KP=X :
X=KP 3
S (J)=X*DV
CALCULATE COEFFICIENTS FOR AND SOLVE LINEAR SYSTEM (3.2) USING
(4.6)=(4.8)
DO 20 K=KL,KU
KK=K
CALL COV (NP, NN, KK)
DEL=P(1,1)*P(2,2)=-P(1,2)*P(2,1)
Al=(P(1l,2)*PO(2)=-PO(1)*P(2,2))/DEL
A2=(P(2,1)*pPO(l)=-PO(2)*P(1,1))/DEL
CALCULATE AND PRINT PREDICTED FREQUENCY |
F(K)=FC*ARCTA (=Al, SQRT (4*A2-Al1*Al)) I
R(K)=SQRT(A2)
WRITE (6,300) K,R(K), F(K)
FORMAT (1X,18,2G20,8)

il L ofe
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C
5
400
C
C
C
5
10
C
C
20
C
25
C
(o

15

CALCULATE AND PRINT MEAN AND STANDARD DEVIATION OF PREDICTIONS
CALL STATS (AM,SD,KL,KU)
WRITE (6,400) AM,SD
FORMAT (1X,2G20,8///)
STOP
END
SUBROUTINE COV (NP, NN, LP)
COMMON/ SAMP/ S (2048)
COMMON/ PHI/ P (2,2)
COMMON/ PHO/ PO (2)
CALCULATE THE PHI(I,J) OF (3.3)
CALCULATE DIAGONAL ELEMENTS, PHI(J,J), OF COVARIANCE MATRIX =
ASSIGN TO P(J,J)
L=LP-1
NI=NN-NP
NL=LP-NI
B=0.
DO 5 J=NL,L
B=B+S (J)*s (J)
DO 10 J=1, NP
K=LP=J
I=NL=-J
B=B+S(I)*S (1)=S(K)*S (K)
P(J,J)=B
CALCULATE REMAINDING PHI(I,J)
DO 15 KK=1, NP
B=0,
CALCULATE PHI(U,KK) = ASSIGN TO PO(KK)
DO 20 J=1,NI

N=LP=J &

M=N= KK 1
B=B+S (N)*S (M) ‘
PO (KK)=B
CALCULATE PHI(I,J),J=I=KK,1<I<NP=1l,2<J<NP = ASSIGN TO P(I1,J)
IF (KK.EQ.NP) GO TO 15
DO 25 K=1, NP-KK

I=K 4

J=KK+K

N=LP=K

M=N= KK

N1=NL-K

M1=N1-KK

B=RB+S (N1)*S(Ml)-S(N)*sS (M)

P(I,J)=B
P(J,I)=E
THE PREVIOUS STATEMENT TAKES ADVANTAGE OF SYMMETRY OF
COVARIANCE MATRIX

CONTINUE
RETURN

END
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SUBROUTINE STATS (AM,SD,KL,KU)
C STATS CALCULATES THE MEAN AND STANDARD DEVIATION OF THE
c KU= (NP*N) PREDICTED FREQUENCIES F(J)
COMMON/FREQ/F (2048)
COMMON/ TFRY/F1
sl=0,
§2=0,
XN=Ky=KL+1
DO 5 J=KL,KU
S1=81+F (J)
5 S2=82+(F(J)=Fl)*+2
AM=S 1/ XN
SD=SQRT(S2/ XN)
RETURN
END
FUNCTION ARCTA(X,Y)
C ARCTA CALCULATES RADIAN FREQUENCY DETERMINED BY ROOT X+JY OF
c (2.3) BY USE OF (4.4)
DATA PI,HPI/3.14159265,1.57079632/
IF (X) 1,2,3
1 ARCTA=ATAN(Y/ X)+PI
RETURN
2 ARCTA=HPI
RETURN
3 ARCTA=ATAN (Y/X)
RETURN
END
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MAXIMUM ENTROPY SPECTRAL

DEMODULATOR INVESTIGATION II

1. INTRODUCTION

A transmitted signal, which is masked by noise and, possibly, interfer-
ence, is assumed to be a sinusoid with Hertz-frequency which varies over some
finite set F of positive real numbers. Let s(t) be the value of this continu-
ous-time signal at time t. Of particular interest is the case where #F = 2;
that is, where the frequency is switched back and forth between two distinct
values.

The object of this study is to evaluate the performance of the Maximum
Entropy Method (= MEM) of spectral estimation for short segments of the dis-
crete-time signal which results from sampling s(t) every T seconds. To be
more specific, we wish to determine the accuracy of the MEM estimates of the
transmitted signal frequencies for the cases (a) received signal = trans-
mitted signal + noise and (b) received signal = transmitted signal + noise +
interference.

The ultimate goal of this project is the real-time use of the MEM (if
feasible) to identify the frequencies of a transmitted signal, thereby
countering the effects of noise and interference (such as that produced by
a keyed, slewing, or CW jammer).

In this paper, we obtain a result (Corollary 6.5) which explains the

excellent performance of the MEM in a simulation [4] for the simple case of

a single-frequency sinusoidal signal with no noise (s(kT) = Asin(2rfkT + P)).

An effort to resolve the problem in case (a) above (t(KT) = s(kT) + n(kT),

where s(kT) is as above and n(kT) is independent, zero-mean, Gaussian noise)




has not been successful. This effort will be continued with the support of

Grant # AFOSR 78 - 3614.

2. THE MODEL

We model the sampled signal s(kT) as the output of a linear discrete
system (= LDS) [1]; in particular, by the difference equation

P

(2.1) s(if) = ~ ¥

a.s((k=-3)T) + u(km),
3 O

where the as are real numBers, T is the sampling period, and u(kT) is the
transmitted signal at time kT. As (2.1) enables one to "predict" s(mT) from
s((m-1)T), ... , s((m-p)T), and u(mT), the name "linear prediction" is also
associated with the MEM.

There are several other equivalent representations of the LDS given by
(2.1) [1; pp. 85-86]. For frequency-domain considerations, the representa-
tion

S(z) = H(z) U(z),

where S(z) and U(z) are the z-transforms of s(kT) and u(kT) respectively and
H(z) is a rational function of z called the "system transfer function," is
useful [1; pp. 220-282]. The transfer function corresponding to (2.1) is

given by

¢ N
H(z)-l/(1+zj=lajz ).

Thus H is an "all-pole" transfer function with p poles, namely, the p solu-

tions of the equation 1 + Ejzl aj z'j = 0 or, equivalently (if z # 0, as is

required by the definition of the z-transform),

(2.2) ZP + a zp_l ¥ ..o * a

1 p-12+ap=0'

Loy

e




¥

»
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5
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3. ESTIMATION OF MODEL PARAMETERS

The model parnameters Ay ey ‘3‘ in (2.1) are approximated by the usual
type of least-squares analysis in the time-damain |23 pp. 563 - 567]. Tor a

given positive integer m, we predict s(ml)  be

p
(3.1) s df - ¥ G0 s((m- DD,
LV S
where the TJ— are chosen 80 as to minimize the mean square error
m-1
T ek (e(kT) df s(kT) - s(kD)
K=m-N

corresponding to the preceding N samples (thereby using the "covariance

"

method" of linear prediction [23 p. S64]). This leads to the system of

linear equations

(3.2) a. (m, N) &ij(m.N) s —%i(m.N) K2 % 2o Bswnn s Pl

1 J

"o~y

j
where, for all (i,3j) ¢ {0 ««c ,P}X {1, ... ,p}
N-1

(3.3) %.j(m‘ N 4§ s(m=N+k=DD) s(m=-N+k=D),
k=0

for determining the T wfmich vield the prediction of s(mT). Fram (3.2) and
(3.3), we L'sev that N+ p consecutive samples s((m=N=p)T, ... ys((m=1T)
are needed. Thus if we do not allow negative arguments, s((N+p+1)T) is the
first sample we can predict.

In making the prediction (3.1), we are assuming that u(ml) is com-

pletely unknown, which is often the case.




4. THE ANALYTICAL APPROACH

The determination of the frequencies f. e F exhibited by the trans-
mitted signal involves (a) calculating the «»ij(m,N) from (3.3), (b) solving
the system of linear equations (3.2) for the % , (¢) solving the polynomial
equation (2.2) with "S;" in place of "aj", (d) determining the radian-
frequency ej in the polar form rj exp(tiej) of each of the complex conjugate
pairs of roots of (2.2), and (e) multiplying ej by an appropriate real
number to obtain the Hertz-frequency.

The problem of determining a confidence interval for fi’ which requires
finding a probability density function, is difficult, even for the simple
case F = {fl} with noise. This case, in which a two-pole model (p = 2 and
the equation (2.2) is quadratic) is appropriate, was considered by the
writer in 1977 under the USAF/ASEE Summer Faculty Research Program. Late in
this program, this analytical effort was abandoned in favor of a computer

simulation. In this paper, we return to the theoretical effort.

5. COMPUTER SIMULATION

In the above-cited simulation, we assumed F {fl} and the transmitted

signal is Asin(?nflT), with f1 e (0,6000) and T = 1/12000 (in accordance
with The Sampling Theorem [1; p. 291]), ignoring noise of the type cited in
[35 pp. 3-5] and interference; thus the only noise is '"quantization noise"
(from use of a simulated analog-to-digital converter (= ADC) in sampling the
continuous-time signal) and "roundoff noise" (from performing the MEM calcu-
lations with a digital computer). This simulation showed excellent perform-
ance of the MEM for sampling with 12 - 16 bit ADCs (which are available

commercially) if fl is not too close to either 0 or 6000 [4; pp. 10 - 26].




The table below fram [4; p. 17] gives the arithmetic mean (= AM) and
standard deviation (= SD) of 2043 predicted frequencies for the number of
error terms used in the minimization N = 2,3, ... ,12 with A = 1.5, fl = 3250,

and simulation of a 16-bit ADC.

N AM SD

2 3249.9999 0.045065880

3 3250.0008 0.034125918

mn 3249.9995 0.024391433

5 3249.9991 0.021149200

6 3250.0010 0.019371934 |
7 3249.9993 0.015833400 d
8 3249.9985 0.013296252 ’
9 3249.999y 0.011714947
10 3249.9999 0.010651756
11 3249.9995 0.00834926u43
12 3250.0000 0.0071696392

6. THE TWO-POLE CASE WITHOUT NOISE

In this section, we give some theoretical results which explain the
excellent performance of the MEM in the above-cited simulation
Throughout the remainder of this paper, we use R and z' to denote the

set of real numbers and the set of positive integers respectively.
6.1. Lemma. For all B,P ¢ R, kym,n ¢ 2",
sin((k+m)B +P) sin((k+n)B+P) - sin((k +m+n)B+P) sin(kB + P)
= sin(mB) sin(nB).

Proof. By familiar trigonometric identities, the left-hand side of the

above equality is equal to
(1/2) (cos((m=n)B) - cos((2k +m+ n)B + 2P))

= (1/2) (cos((m+n)B) = cos((2k +m+ n)B +2P))

I1-7
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(1/2) (cos((m-n)B) = cos((m+n)B)

sin(((m+n+m-n)/2)B) sin(((m+n-(m-n))/2)B)

sin(mB) sin(nB).
6.2. Corollary. If, forall k ¢ Z',
(sk df) s(kT) = Asin(2nfkT +P),
where f,P, T ¢ R, then, for all k,m,n e 2°

) 2 A2 a1 .
B Pt ™ Feen b0 e A% sin(2nfmT) sin(2nfnT).
In particular, for m = n = 1, we have Sk+12 - 8.8 49" A? sin?(2nfT).

6.3. Theorem. Ifp=2,NeZ -{1}), m=N+p+l, s _is defined as in
Corollary 6.2, 0 < P < 21, and 0 < f < 1/(2T), then (a) the system (3.2) is

singular if and only if £ = 0 or £ = 1/(2T) and (b) in the non-singular case,

its solution is the pair (31—, a_z') given by a; = -2cos(2nfT) and a_?' e 1.

Proof. (a) If p=2andm= N+p+1, then (from (3.3))

N-1
Iygme 0 8 kZO ®3+k-1%3+4k-]

and the system (3.2) is as follows:
2 2 e o
(52 METRRTTR S Y )a1 + (s1 Sytsysyt "’+SNSN+1)a2

(6.1) = -=(sysgtsys .t sy Siy)

g 2 2 SN
(slsz+s2s3+...+stN+1)a1 + (sl +32 +...+sN )a2

= -(sls3+828u+“'+sNSN+2)'




B PG B i RS e B ¢ e il

Let D be the determinant of the matrix of coefficients in (6.1). Then

o 2 2 2 2y o 2
D = (sl 4-...+sN )(s2 +...+SN+1 i (5152+5253+'“+SNSN+1) b

It is convenient to arrange the terms of D in a 2N by N array

o

merebothUandVareryNa.rTays,uij 2 and v,, df

sj+1 17 s
. . 2 . .
-S; Si+lsj Sj+l for all €(3,3) ¢ £1,2, ... ,N}2. The main diagonal ele-

df g,2
i

ments of U cancel with the corresponding elements of V; that is, uii + vii
*0fov dall 16 (1,25« <N} The remaining terms of D can be grouped as

follows:
(Tijg{) uij+vij+uji+vji (1=1y .00 yN=-13 §=i+1,...,N).
Thus
N-1 N
o S e L N
i=1 j=iep

It is helpful to replace this sum by one in which we sum along "lines"

j = i+k, k = 1,2, DY ,N-l; that iS

N-1 N-k
0% gy e
Obviously,
Tij = Si2 Sj+12 - S{Si4 848547 * sj2 siﬂz ~ 858541 84 Sy
= (Sjsi*-l Sj+ls.1) .

Hence, by use of Corollary 6.2 (with k = i, m=k, and n = 1), we have




TR S

(

i 2
Si+kSi+1 " Si+x+15;)

(A? sin(2nfkT) sin(2nfT))2

A" sin2(2nfT) sin? (2nfKT).

Therefore,
N-1

I (N-X)A* sin2(2nfT) sin2(2wfkT)
k=1

o
"

N-1

A" sin?(2nfT) § (N-k) sin2(2rfKT).
k=1

Hence, D = 0 if and only if sin(2nfT) = 0 or sin(2nfkT) = 0 for all k e
{1,2, ... ,N-1}, which is equivalent to sin(2nfT) = 0. As 0 < f < 1/(2T),

0 < 2nfT < n and, therefore, sin(2nfT) = 0 if and only if f = 0 or £ = 1/(2T).

(b) In case D# 0, Cramer's rule gives the solution (3_1,35), where

D(1)=-(sz+sz+ +s5.2)(s,s,+s,8, + + )
| R BN T Bl e R R T T
+(3153+325u+"'+SNSN+2)(5152+8233+"'+SNSN+1)’
and
D(2)=-(sz+sz+ + 2)(s,s,+s,.5s, + +5.8...)
-Fhi - TR T e G Bl o SEA RS, "L Y
+(5283+S3sl&+"'+sN+lSN+2)(sls2+8283+°”+stl\Hl)°
To calculate D1 we proceed as with D. Let u (l)df-szs s
4 Lol : - SR e e B % T8
(L gf
vij sisi+23j sj+1, and

I1-10
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Q) gf (1) (1) (1) 1) < 1. t=s
'I‘ij d uij +Vij +uji ~0-vji Clely o B=13 J=i®). . ... N).
It is easy to show that
gl s 1) S 5
Tij - (sisj+l - Sj Si"’l) (si+2bj - Sisj'},’)

Now, by two uses of Corollary 6.2, we have

(1) _
Ti itk T 3% ake1 " %4151 41) (554285 4p - SiSiek+2

(= A? sin(2nfkT) sin(2nfT)) (A2 sin(2nfkT) sin(2nf2T))

- A% sin(2nfT) sin(4nfT) sin?(2nfkT).

Thus
N-1 N-k
% 1)
i kgl ig—l ik
N-1
= - A" sin(2nfT) sin(4nfT) | (N-k) sin®(2nfkT).
k=1

Vet df s,

¢ (2) arf 2
Fl.nally, let uij "“‘-si'.'l. Sj Sj+'2’ l] . 1+1Si+?sj Sj*l’

and

T._(2) af u._(2) +v..(2) “(2) “(2)
1] - 1) J1 Ji

= (Si+lsj - Sisj+l)(si+28j+1 - Si+lsj+2)'
By Corollary 6.2,

2) .
T iex T (%5415 0k = 51% ake1) 1425 4k - Si+15i 4k 2’

= (8141 S1ak = 51 Sime1? (S(ie1)41 S(141)4k = Si41 S(ie1yexe1)

I1-1
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(A2 sin(2nfT) sin(2nfkT)) (A2 sin(2nfT) sin(2wfkT)):

A" sin?(2nfT) sin2(2nfkT)

ll T T
Hence, D(2) = D.
Thus,
g DV A% sin(2efD) sin(uneD) N (N - 1) sin2 (2nfkT)
oy A% sin? (2nfT) )27 (N=X) sin?(2nfKT)
= = 2cos(2nfT)
and
gy
a, = T = B= o 46

We should remark that D could have been evaluated easily by use of

Lagrange's identity; however, this is not the case for D(l) and D(z)

6.4. Remarks. In case p = 2, the minimization of Section 3 must
invelve at least two error terms; hence, we have assumed N # 1 in Theorem 6.3.
In case N = 1, the system (6.1) takes the form

28 B & -
82 al + slsza2 = 8283

a, + s,?2a,

ot Bt P el e

and D = D(l) = D(2) = 0. Thus, (6.1) does not have a unique solution.

There is no loss of generality in assuming m = N+p+1 in Theorem 6.3.

This is an obvious consequence of Corollary 6.2. For example, if m = N+p+2,

11-12




then each of the subscripts in the coefficients of the system (3.2) and in

(1) (2)

the expressions for D, D'77, and D is one larger than in the case of

m= N+p+1; thus, by Corollary 6.2, D, D(l), and D(2) have the same values.
Examination of the cases N = 2 and N = 3 suggested the proof of
Theorem 6.3. It may be helpful to give the proof of this theorem in case

N = 2. First,

o
"

2 2 2 Y L 2
(s1 *l*s2 )(s2 +s3) (slsz+s,2s3)

1]
+

2 2 2 2
8,7 8,° % 5% 8g

2g 2 + g2

* 8,%8

-81325152 - 81528253

TRaNg 9y Uy T 8594 %0 8y

% a2 .0 IR 2
8 8y ¥ 8,08 8,78y ~ 88, 8,

& g0 2
= (s2 Sy 53)

(A% sin?(2nfT))?2

A% sin*(2nfT).

Obviously, D = 0 if and only if sin(2nfT) = 0 or if and only if f = 0 or
f = 1/(2T). Also,

(1) _ 2 2
D = —(s1 +32 )(5253+S3Su) + (3153+S2su) (slsz+szs3)

11-13
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IR,

1
|
.

and

(2)

- sl2 8,8, - sl2 S48,
- s22 SyS3 - 522 S35,
S, 835,85,
+s,8, 8, s, +

%% T 06, 8.8,

Rogiigl a2

£ v o 3
8,838, =~ S," 83 * 8, 8,8, 152" 8y

- (522 - sy 85) (s2 S3 - S5y s,)
- (A? sin?(2nfT)) (A2 sin(2nfT) sin(2n£2T))

- A% 5in3(27fT) sin(uxfT)

- 2 2

(s2 *+s, )(slsa-!'s2 su) + (sls2+s2 53) (32 Sy +sy su)
9 o 2

S,2 8, 84 s,2s,8

gl 2 24

- 532 S;83 - 332 Sy 8,
+sls23233 + slszs3su
+5,838,8; + 5,8;8,5,

=5y78, = 8)85° + 58,858, + 878y

- £ o
(32 Sy 53) (53 Sy su)
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5

Hence, if D # 0,

(A% sin2(2nfT)) (A? sin2(2nfT))

A" sin*(2nfT)

o™ A% sin3(2nfT) sinCunfD)
a, = = P = ~2cos(2nfT) -
D A* sin*(2nfT)
and
p(2) D
% = —D_ = S_—. 3
6.5. Corollary. If the hypotheses of Theorem 6.3 hold, then
s((N+p+ 1)T) = s((N+p+1)T).
Proof. From (3.1), Theorem 6.3 (b), and familiar trigonometric identi-

ties, we have

s((N+p+1)T)

-§s<(N+p)T) -~ 61—2'8((N+p-1)T)

- (- 2cos(2mfT)) (Asin(2nf(N+p)T+P))

- (1) (Asin(2nf(N+p-1)T+P))

A (sin(2nfT + 2nf(N+p)T +P) - sin(2nfT - 2nf(N+p)T-P))

- Asin(2nf(N+p-1)T+P)

Asin(2nf(N+p+1)T+P) + Asin(2rf(N+p-1)T+P)

= Asin(2nf(N+p-1)T +P)

Asin(2nf(N+p+1)T+P) = s((N+p+1)T).

I1-15




6.6. Remark. Corollary 6.5 explains the remarkably good simulation
results cited in Section 5 for the case of no noise. We assumed in Theorem
6.3 and Corollary 6.5 that the first N+p (= N+ 2) samples of the received
signal are actually the first N+ p samples of the transmitted signal and
showed that the minimization process of linear prediction by the covariance

method leads to values of a_l_ and 5_2' such that the predicted signal sample

s((N+p+1)T) is equal to the transmitted signal sample s((N+p+1)T). Thus
there is no model error, according to this corollary; all the error is due

to the quantization and the computational process.

6.7. Theorem. Suppose the hypotheses of Theorem 6.3 hold with

0 < f < 1/(2T) (so that the system (3.2) is non-singular).

(a) The zeros of z2 + Etzz + a, (that is, the poles of H(z)), with

a) = - 2cos(2nfT) and 5; = 1 as in Theorem 3.2 (b), are
z, df cos(2nfT) - isin(2nfT) = exp(- 2nfTi)
and
z, df cos(2nfT) + isin(2nfT) = exp(2nfTi).
(b) These zeros, zy and Zys have magnitude r = 1 (that is, can be
represented by points on the unit circle) or, in terms of % and 3;,
r = /‘%.

(c¢) If T = 1/12000 (so that 0 < f < 6000), then

(6000 / m) tan™(In(z,) / Re(z,)) (if 0 < 2fT < n/2),
(6.2) £=4< 3000 (if 2nfT = 1/2),

(6000/) (tan'1<1m(z2) /Re(zy)) + 1) (if 7/2 < 2ufT < )

I1-16




or, in terms of a, and %,
(6000/7) tan"t(- NE, -2 /3) (if & < 0),
(6.3) Tz 3000 (if a.’1 = )

(6000/7) (tan"t(- VT -T2 /a) ) (if T > 0).

Proof. (a) From Theorem 6.3 (b) and the quadratic formula, the zeros

z2 + 3.z + a.
of z a a, are

(-a_1/2) + ( a‘12 -uaz,/z)

or, as a2 - 4a, = bcos2(2nfT) - 4 < 0,

11
(-a_l/2) :i(/ua_z-a—f/z)

N

cos(2nfT) + isin(2rfT).

(b) Obviously,

- 2 oy 2 SIS A
/( a2+ (Vug - 52/ la.=fi=y.

74

{2 v
(c) Let X df Re(z,) = cos(2nfT) and Y df Im(z,) = sin(2nfT).

Case 1 (0 < 2nfT < n/2). In this case, X >0, Y >0, and Y/X =

tan(2nfT) > 03 thus, 0 < tan_l(Y/X) < n/2 and, hence, 2nfT = tan-l(Y/X).

As T = 1/12000,
£ = (6000 / 1) tan 1(Y/X).

Case 2 (2nfT = n/2). As T = 1/12000, f = 3000 follows immediately

from the case assumption.

Case 3 (n/2 < 2nfT < ). In this case, X <0, Y > 0, and Y/X =

I1-17
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tan(2nf'T) < 03 thus, -a/2 < t:»m-‘l(\'/\’) < 0 and, hence, 2nfT = mn-](Y/X) +on.

i As T = 1/12000,
£ = (6000 /1) (tan" (Y /%) + ).

b Finally, (6.3) results immediately from (6.2), as Re(:,) = —T‘ /2 and

5 s G
Im(z,) = vV 4a, - - 7y

{ 6.8, Remarks. ‘Theorem 6.7 shows that the frequency of a sinusoidal

signal without noise of any kind (including quantization noise and roundoff
noise) can be determined (by use of (6.2) or (6.3)) fram a pole of the all-
pole transfer function associated with the IDS (2.1) with p = 2. In
subsequent work, we will use (6.3) to approximate £ in the case of a sinus-
oidal signal with Gaussian noise.

The simulation results given in Section 5 show that the standand devia-
tion of the pngliut‘od values of  decreases as N increases. This might seem
strange in vicw' of the fact that '1—1' (= «2cos(2nT)) and I (= 1) are inde-
pendent of N. However, the camputer prognam used calls for the computation

(1) . ()

of D , and D

which do depend on Nj that is, no cancellation is done

in the computer computation.
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MAXIMUM ENTROPY

SPECTRAL DEMODULATOR INVESTIGATION III

1. INTRODUCTION

A transmitted signal, which is masked by noise and, possibly, interfer-
ence, is assumed to be a sinusoid with Hertz-frequency which varies over some
finite set F of positive real numbers. Let s(t) be the value of this continu-
ous-time signal at time t. Of particular interest is the case where #F = 2;
that is, where the frequency is switched back and forth between two distinct
values.

The object of this study is to evaluate the performance of the Maximum
Entropy Method (= MEM) of spectral estimation for short segments of the dis-
crete-time signal which results from sampling s(t) every T seconds. To be
more specific, we wish to determine the accuracy of the MEM estimates of the
transmitted signal frequencies for the cases (a) received signal = trans-
mitted signal + noise and (b) received signal = transmitted signal + noise +
interference.

The ultimate goal of this project is the real-time use of the MEM (if
feasible) to identify the frequencies of a transmitted signal, thereby
countering the effects of noise and interference (such as that produced by a
keyed, slewing, or CW jammer).

The problems stated in the second paragraph appear to be theoretically
intractable. We give some partial theoretical results and discouraging
simulation results for the case (a). For case (b) without noise, we give

simulation results which point to the need for analog-to-digital conversion

of greater precision than is possible with currently available equipment.

|
|
|
4
4
|
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2. THE MODEL

We model the sampled signal s(kT) as the output of a linear discrete
system (= LDS) [1]; in particular, by the difference equation
p

I a;s((k-j)T) + u(km),
j=1

(2.1) s(kT) =

where the aj are real numbers, T is the sampling period, and u(kT) is the
transmitted signal at time kT. As (2.1) enables one to 'predict" s(mT) from
s(m-1)T), ... , s((m-p)T), and u(mt), the name "linear prediction" is also
associated with the MEM.

There are several other equivalent representations of the LDS given by
(2.1) [1; pp. 85-86]. For frequency-domain considerations, the representa-
tion

§(z) = H(z) U(2),

where S(z) and U(z) are the z-transforms of s(kT) and u(kT) respectively and
H(z) is a rational function of z called the "system transfer function," is
useful (1; pp. 220 - 282]. The transfer function corresponding to (2.1) is
given by
P 8
H(z) =1/ + § a,z9).
j=1

Thus H is an "all-pole" transfer function with p poles, namely, the p solu-

p a4
tions of the equation 1 + Zj J

i aj z’ = 0 or, equivalently (if z # 0, as is

required by the definition of the z-transform),

(2.2) P 4 a ® L ap_l z 4+ 5" 0.

I11-4
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3. ESTIMATION OF MODEL PARAMETERS

The model parameters a1y cee s ap in (2.1) are approximated by the usual
type of least-squares analysis in the time-domain [2; pPp. 563 -567]. For a

given positive integer m, we predict s(mT) to be

P
(3.1) s@n) 4 - | ays(m-j)m,
j=1

where the ;; are chosen so as to minimize

m-1

I €2(kT)  (e(kT) 4f sxT) - S(kT))
k=m-N

corresponding to the preceding N samples (thereby using the "covariance
method" of linear prediction [2; p. 564]). This leads to the system of
linear equations

g
(3.2) [ ajm N 35 N) = - 00 (m,N)  (i=1,2, ...,p),

j=1
where, for all (i, j) ¢ {1, ... ,p}?,

N-1
(3.3) ¢35 (m, N) df b SN0 Nk - )Ty 008 - Kok~ 1),

for determining the ;;'which yield the prediction s(mT). From (3.2) and
(3.3), we see that N+p consecutive samples s(m-N-p)T), ... , s((m-1)T)
are needed. Thus if we do not allow negative arguments, s((N+p+ 1)T) is
the first sample we can predict.

In making the prediction (3.1), we are assuming that u(mT) is com-

pletely unknown, which is often the case.
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4. THE ANALYTICAL APPROACH

The determination of the frequencies fi € F exhibited by the transmitted
signal involves (a) calculating the ¢i5(m,N) from (3.3), (b) solving the
system of linear equations (3.2) for the 5;, (¢) solving the polynomial equa-
tion (2.2) with "5}“ in place of "aj", (d) detemmining the radian-frequency Gj
in the polar form rjexp(tlgej) of each of the complex conjugate pairs of
roots of (2.2), and (e) multiplying Bj by an appropriate real number to obtain
the Hertz-frequency.

The problem of determining a confidence interval for the frequency of the
transmitted signal at a given instant and for the frequency of the interfer-
ence (if any), which requires finding probability density functions, is
difficult, even for the simple case F = {fl} with noise. This case, in which
a two-pole model (p = 2 and the equation (2.2) is quadratic) is appropriate,
was considered by the writer in 1977 in the USAF/ASEE Summer Faculty Research
Program. The analytical approach was abandoned in favor of a computer simula-

tion. In this paper (Section 6), we return to this theoretical effort.

5. SIMULATION IN THE TWO-POLE CASE WITHOUT NOISE

In the above-cited simulation, we assumed F = {f;} and the transmitted
signal is Asin(zwflT), with fl ¢ (0, 6000) and T = 1/12000 (in accordance
with The Sampling Theorem [1; p. 291]), ignoring noise of the type cited in
fa; pp. 3-5] and interference; thus the only noise is "quantization noise"
(from use of a simulated analog-to-digital converter (= ADC) in sampling the
continuous-time signal) and "roundoff noise" (from performing the MEM calcu-
lations with a digital computer). This simulation showed excellent perform-
ance of the MEM for sampling with 12- 16 bit ADCs (which are available

commercially) if f1 is not too close to either 0 or 6000 [5; pp. 10~ 26].
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The table below from [5; p. 17] gives the arithmetic mean (= AM) and
standard deviation (= SD) of 2043 predicted frequencies for the number of
error terms used in the minimization N = 2,3, ... , 12 with A = 1.5, fl = 3250,

and simulation of a 16-bit ADC.

N AM SD

2 3249.9999 0.045065880
3 3250.0008 0.034125918
4 3249.9995 0.024391433
S 3249.9991 0.021149200
6 3250.0010 0.019371934
7 3249.9993 0.015833400
8 3249.9985 0.013296252
9 3249.9994 0.011714947
10 3249.9999 0.010651756
11 3249.9995 0.008349264
12 3250.0000 0.007169639

6. THE TWO-POLE CASE WITH NOISE

In this section, we consider the case in which the number of poles p = 2
and

(s, 45 s&T) = t(kT) + n(kT),

where t(kT) = Asin(2nfT + P) and n(kT) is independent, zero-mean, Gaussian
noise.

We assume for simplicity that N = 2, in which case the system (3.2) is

2 2N & o & -
(5,° + 85°) a; + (s)8; *+5;835)8; = - (5,85 * 533,)s
(6.1)
o R T
(sls2 + 3253)a1 + (s1 +s, ) 3, (5153 + 5254).

As was shown in [6; p. 6, Theorem 6.3], this system of equations is singular

if and only if f = 0 or f = 1/ (2T), in case we restrict f to [0, 1/ (2T)].




——

In the non-singular case, its solution is the ordered pair (a—l-. ;2—) given by

50 08 2
(517 + 5% (5555 *+ 5384) + ()55 + 5,5,)(s)5, + 5,55)

6.2) a =
(512 + 5,20 (s, + 557) = (515, + 5, 55)2
= (5, - sy sp) (5y54 - 5,35/ (5,2 - 5)59)?
= (5154 - 5585) /(5% - sy59)
and
5P e sgs sy e sysy) ¢ (s)s) ¢ s, 850 (s, 55+ sgS,)
(6.3) 3 =

2 2 2 N 2
(517 * 5590 (5,° + 55%) - (55, *+ 5)55)

(5,2 - s5)55) (552 - 55500 / (557 - 5 55)?

(532 - 5,80/ (522 - s 55).

The problem of determining the probability density functions of the ran-
dom variables q and g is intractable according to my colleague T. S. Bolis,
an expert in probability theory. The numerators and (common) denominator in
the expressions for ;1_ and -3-2— have distributions which look ''something like"
non-central chi-square distributions. However, Bolis has shown (by use of the
characteristic function - a complex variable analog of the moment generating
function) that the numerator and denominator are dependent for both q and §3
thus we cannot easily calculate bounds on ;1- and 5; (through bounding the
numerators and denominator - which requires independence).

As shown in [6; pp. 14 - 16, Theorem 6.7], for the two-pole case without

noise (s(kT) = Asin(2vfT + P)), the frequency, f, of the transmitted signal
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is given by

(6000/) tan™ ! (- ¥/ 43, - 3,2 /3) (if 3, < 0),

(6.4) f = 3000 (ifa‘1 0),

(6000/7) (tan!(- Y 45, - 3,2/a) + ) (if a, > 0). 2

v

We also use (6.4) to "predict" f in the two-pole case with noise. If we

could bound a—l and 3—2’ we could try to get bounds on f as given by (6.4).

We can, however, obtain the expected value and variance of the numerator

and denominator in the expressions for both ;i and 2 (Theorem 6.4).
6.1. Lemma. For all B,P e R, k,m,n ¢ 2",
sin((k +m)B+P) sin((k +n)B+P) - sin((k +m+n)B +P) sin(kB + P)
= sin(mB) sin(nB).

Proof. By familiar trigonometric identities, the left-hand side of the

above equality is equal to
(1/2) (cos((m-n)B) -~ cos((2k +m +n)B + 2P))

- (1/2) (cos((m+n)B) ~ cos((2k +m +n)B + 2P))

(1/2) (cos((m-n)B) ~ cos((m+n)B)

sin(((m+n+m-n)/2)B) sin(((m+n - (m-n))/2)B)

]

sin(mB) sin(nB).

"

6.2. Corollary. If, for all k ¢ z",
(sy df) s(kT) = Asin(2nfkT +P),

where f, P, T ¢ R, then, for all k,m, n ¢ Z+,




e g e e e

SkemSk+n - Sk+men Sk = A?sin(2nfmT) sin(2nfnT).

i = = 2_ =2‘2
In particular, for m = n = 1, we have Sk el Sk Sk + 2 A€ sinc(2nfT).

6.3. Lemma. If X is a normally distributed random variable, E(X) = 0,
and Var(X) = o2, then, for all n e Z+,

2n+1

(a) EX ) =0

and

n
@ B - o™ TT 2t - 1.
i=1

Froof. This is a well-known result; (a) follows immediately from the
+o0
fact that if f is an odd function, then f__.. f(x)dx = 0 and (b) follows

readily from

n
jf: X2 e G o (20) ™™ (n/ )12 TT €21 - 1.
i=1

6.4. Theorem. If, for all k ¢ Z+, Sg = tk * N, where

t, df t(KT) = Asin(2nfkT +P),

A,P,TeR, 0P <2r, 0<£<1/(2T), and n df n(kT) is independent, zero-
mean, Gaussian noise (nk has normal distribution with E(nk) =0, Var(nk) = 02,
and E(nirg) = E(ni) E(nj) =0 if i # j), then the following hold:

(a) for all k ¢ Z’, Sy has normal distribution with E(sk) = tk and
var(s,) = 02;

(b) if p = N = 2, then the solution (al,az) of the (6.1) is given by (6.2)

and (6.3) and

E(s) S, -8,835) = - A? sin(2nfT) sin(47€T),
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4
i LB s ‘02
Var(s, s, - s, sg) = 20" + A0 Zkal sin? (2nfkT + P),
2 _ SR R e
E(s3 S, 54) 0° + A< sin“(2nfT),
Var(532 -5,5,) =3 0% + A2 02 [sin2(4nfT + P) + 4 sin2 (67£T + P) +sin2(8nfT + P)],

5(522 -5;8;) = 02 + A?sin2(2nfT),

and
Var(522 -5;85) =3 o* + A2 02 [sin2 (2T + P) + 4 sin2 (47£T + P) +sin?(67fT + P)].

Proof. The proof of (a) is trivial. We have already shown, at the begin-

ning of this section that (6.2) and (6.3) give the solution of (6.1). We now

complete the proof of (b).

5 23 2 .
Let NuM1 df S)S4 5,55, NUM2 af S3°-S,5,, and DEN df S,° -5, S5 Now,

B(NUM1)

E((tl o nl) (t4 + n4) = (tz + nz) (t3 * ns))

E(t1t4 - t2t3 + tln4 + t4n1 +nn, - tzn3 - t:,)n2 - n2n3)

= t1 1:4 -t t3 + tIE(n4) + t4E(n1) + E("lnd) - tzE(ns)
- tsE(nz) - E(n2 ns).
By hypothesis, the expectations involving the n, are zero; thus
E(NUM1) = tt, -ty
Hence, by use of Corollary 6.2 (with k =m =1 and n = 2), we have
E(NUM1) = - A2 sin(2fT) sin(47£T).

We can view

NUM1 - E(NuM1) (= S1S4 = Sp83 - (t1 ty -ty tS))

III-m
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as a function of (sl, S5 S35 54) and expand in a Taylor series about

(tl, tz, t3, t4) to obtain

NUM1 - E(NUM1)

t, (s1 - tl) -ty (s2 - t2) - t2(53 - t3)
* (s4 - t4) + (s1 - tl) (s4 - t4)

- (55 - ) (s5 - t3)

t4n1 - tsnz ~ t2n3 + tl n4 + n1n4 # nzns.

Hence,

Var (NUM1) = E((NUMl - E(NUM1))2)

2oy 2 252 2D 25 2 2a 2 )
E(t4n1+t3n2+t2n3+tln4 +n,°ny, +n2n3

= g 2
2t3t4n1n2 2t2t4n1n3 + 2t1t4n1n4 + 2t4n1 n

2t,n. n

a™ 2t.n

+2t,t.n -2t t

2 & =
+2t3n2 n, 2t1t2n3n4 2t2n1n3n4 )

& "
Ztlnln4 2t1"2“3“4 2n1n2n3n4).

2y 2y Pals B e T e e e |

+2t.n,n,2

By use of properties of expectation, Lemma 6.3, and hypotheses, we have

2 2 2 2 2 2

Var (NUM1) ty E(nl ) + ts F.(n2 ) + t, E(ns )
2 2 CATEN 25 2
tt r:‘(n4 ) + I:‘(n1 n, ) + E(n2 ng )

2 2 2 2 2 Y
o} (t:1 +t2 +tsg +t4)+20

4
20" + A202 | sin?(2nfkT + P).
k=1




Next,

E(NUM2) =

E((tg + n3)2 - (t, + 1) (L, + n,))

2 - 5 " 4 2
E(ts t2t4 + 2t3n3 t2n4 t4n2 n,n, + ng )

t

t

2. = " i 2
3 tyt, + 2t3£(n3) tZE(n4) t4E(n2) E(n2n4) + E(ns )

& 2
3 t2t4+c.

Thus, by Corollary 6.2,

E(NUM2) = 02 + A2 sin2(2nfT).

We can view

y = o2 o g 2
NUM2 - E(NUM2) (= s S, S, (t3 tzt

as a function of (52’ Sz 54) and expand in a Taylor series about (tz, tzs t

to obtain

NUM2 - E(NUM2)

+ 02))

3 4

»

Sgls . = = =

o] t4 (52 tz) + 2t3 (53 t3) tz (s4 t4)
= s & = 2

(52 tz) (54 t4) = (53 tS)

gt A » 2
o] t4n2+2t3n3 t2n4 n2n4+n3.

Proceeding as in the calculation of Var(NUMl), we can show that

Var (NUM2)

Y 2 2 2 2 2 2 2 ¥
ot + t4 E(n2 ) + 4t3 E(ns ) + t2 E(n4 ) + E(n2 n, )
+ E(ns"') - 202E(n32)
ot + o2 (t42 + 4t32 + tzz) + 0% + 30" - 20"

4 2 2 = 2
30% + 0 (t:4 4-4t3 +t2)
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= 30" + A% 02 [sin?(4nfT + P) + 4 sin? (67£T + P) + sin? (8nfT + P)].

Similarly, we can obtain expressions for E(DEN) and Var(DEN) which are
identical and almost identical, respectively, to those for E(NUM2) and
2 _ s t.2 o
Var(NUM2). (Note that, by Corollary 6.2, t3 t2t4 t, tlt3.)
As a check on the reasonableness of the expectations in Theorem 6.4 (b),

let us consider some consequences of assuming that NUM1, NUM2, and DEN

actually take their expectations as values so that

a‘l‘(o) = (- A? sin(2nfT) sin(47€T)) / (02 + A? sin?(2nfT))
and

ay(0) = (0% + A?sin2(2n£T)) / (0? + A? sin?(2n£T)) = 1.
(Note: We are not claiming that ;I = E(NUM1) / E(DEN), nor that E(SI) =
E(NUM1) / E(DEN).) One can readily show that

ET(O) = - 2cos(2nfT) and a,(0) = 1,

which we have shown [5; p. 6, Theorem 6.3 (b)] gives the solution of the
system (6.1). Thus, from (6.4), we get f = f, Also,

lim H;(o) =0 and lim 5;(0) = 1.
T +00 o =» +00

Thus, in this limiting case, we get f = 3000 from (6.4). (In this case, the
equation (2.2) is z? + 1 = 0 which has solutions +i yielding 8 = n/2 and

£ = (6000/ ) (n/2) = 3000.) Therefore, under the above assumptions, we get

the same result, f = f, as in the (deterministic) all signal - no noise case if

o = 0 and we get f = 3000, which is midway along the frequency band (0, 6000)

(and obviously minimizes the error f- f), in the all noise - no signal case

g "="4¢o8.
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The following table gives the expectations, variances and standard devia-

tions from Theorem 6.4 (b) for f = 3250, A =1, and o

= 0.01, 0.1, and 1.0.

o
1.0 0.1 0.01
E (NuM1) 0.2566 0.2566 0.2566
Var (NUM1) 4.1535 0.02174 0.0002154
Std (NUM1) 2.0380 0.1473 0.01468
E (NUM2) 1.9830 0.9930 0.9831
Var (NUM2) 6.7312 0.03761 0.0003732
Std (NUM2) 2.5945 0.1939 0.01932
E (DEN) 1.9830 0.9930 0.9831
Var(den) 3.1045 0.02114 0.0002105
Std (DEN) 1.7619 0.1451 0.01451

Some experimenting with reasonable departures of NUM1, NUM2, and DEN from

their means in case o

(6.4), can depart substantially from 3250.

1 will show that the predicted value of f, f, given by

Table 1 gives the results of a simulation of the signal and Gaussian noise

case. The variables AM and SD respectively are the arithmetic mean and stan-

dard deviation of 100 predicted values, f, of f.

given as Appendix 2.

The simulation program is

We use a procedure given by Knuth [2; p. 104] for generating random num-

bers with distribution N(0, 1); then, numbers with any normal distribution can

be generated by a simple linear transformation (if X is N(0, 1), then Y df

u+0oXis N(u,oz)). This procedure is given below.

Until satisfied, do:

(1) Generate two uniformly distributed random numbers r, and r,.

(2) Set V1

= 2r1

-1 and set V, = 2r

2

I11-15

1 2

P PO Ty e e




= v 2 2
(3) Set S = Vl + VZ i
(4) IfS <1, set X, = Vl (-21n (S)/S)L“ and set X, =
VZ(- 21n (S)/ 5)5; otherwise, go to (1).

As not all pairs of uniformly distributed random numbers lead to a pair of |
normally distributed random numisers, an excess of such pairs must be generated.
The uniformly distributed random numbers were obtained from use of the Honey- |

well library function RANDT.
TABLE 1

Arithmetic mean AM and standard deviation SD of 100 predicted values

f of the Hertz-frequency f (= 3250) of the transmitted signal in the
signal and Gaussian noise case for the standard deviation of the noise
o = 0.001, 0.01, 0.05, 0.1, and 0.2 with the amplitude of the trans-
mitted signal A = 1, the number of error terms in the minimization

(of Section 3) N = 2, 501, and 1000, and the number of ADC bits NB =
28. SNR is the signal-to-noise ratio 20 log10 (A/o).

e ot S R 0L dena e

o SNR N AM SD
0.001 60.00 2 3249.9703 1.4424
501 3249.9993 0.5466E-2
1000 3249.9995 0.2802E-2
0.01 40.0 2 3249.7444 14.5075
501 3249.9546 0.5509E-1
1000 3249.9389 0.2798E-1
0.05 26.02 2 3249.7308 72.3807
501 3248.9504 0.2803
1000 3248.4615 0.1399
0.1 20.00 2 3252.1990 145.6529
501 3245.9330 0.5945
1000 3243.9413 0.2873
0.2 13.98 2 3268.8310 307.4860
501 3234.9594 1.4030
1000 3227.3130 0.6397

SURIAPSRF IS SRR SR -
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In the no noise case studied in [5], we showed that increasing N, the num-

ber of error terms in the minimization of Section 3, significantly decreases
the variability of the f values (see the table on page S of this paper). 1In
the present simulation, we give N the values 2, 501, and 1000.

The program calls for giving the standard deviation of the zero-mean
Gaussian noise, o, the sequence of values 0.001, 0.01, 0.05, 0.1, 0.2, 0.3,
0.5. With o = 0.3, the variable DISCR took on some negative values which led
to an attempt to find the square root of a negative number. DISCR has value
4.0A2 - A12, which is the negative of the discriminant of the quadratic
Z2 + A1Z + A2. Thus, with o = 0.3, zeros of some of the 100 quadratics are
real and (6.4) does not apply.

We note from Table 1 that the accuracy of the predicted values, ?, of f
decreases (3250 - AM increases and SD increases) as o increases. Also, we note
that the sequence of AM values (with N = 1000) 3249.9995, 3249.9389, 3248.4615,
3243.9413, 3227.3130 respectively corresponding to ¢ = 0.001, 0.01, 0.05, 0.1,

0.2 are receding from 3250 toward 3000 (see the comments on page 12).

7. SIMULATION IN THE SIGNAL AND INTERFERENCE CASE
Assume, for all k € Z*,

(7.1) s (kT) = Atsin(ZﬂftkT) + Aisin(anikT),

where ft is the Hertz-frequency of the transmitted signal and f, is the Hertz-
frequency of the interference. We assess, by simulation, the sampling varia-
bility of the predicted values of ft and of fi due to a combination of quanti-
zation noise and roundoff noise.

Suppose we wish ft to take two distinct values (#F = 2) which are 50 Hert:z

apart, say 9975 and 10025, and fi = 10000. In accordance with the Sampling
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Theorem [1, p. 291], we must sample at a rate of at least 20050 (= 2 * 10025)

samples per second. However, in view of the poor results (reported in [S])
obtained in case s(kT) = Asin(2nfkT) and f is '"close to" an end-point of the
frequency band under consideration, we sampled at 25000 samples per second
(T = 1/ 25000).

We give simulation results for ft = 10025; similar results were obtained
for ft = 9975. We did not study model behavior when ft is switched instantane-
ously from 10025 to 9975 or vice versa. The simulation program is given as
Appendix 3.

In case s(kT) is given by (7.1), a four-pole model (2.1) (p = 4) is appro-
priate and the equation (2.2) is quartic. Rather than use the tedious quartic
formula to solve (2.2), we use the Honeywell library subprogram ZORP2, which
uses a modified Downhill-Newton method. For solving the linear system (3.2),
we use the Honeywell library subroutine LINSS, which uses Gauss elimination
with pivoting.

Both ZORP2 and LINSS were modified as early runs led to no results ("DEGEN-
ERATE MATRIX ..." error messages from LINSS) or poor results. Somewhat better
results were obtained by replacing the suggested value, 10-6 or 10-7, of the
variable EPS by 10’9. However, satisfactory results were obtained only upon
going to double-precision representations of data and double-precision arith-
metic throughout the main program and all the subprograms and decreasing the
value of EPS to 10'18. The Honeywell version of ZORP2 consists of single-
precision subroutines DOWNH, GRAD, MTALGD, DIV, and POLY. In DOWNH, a number
of logical IF statements involve constants 10°% and 10'7. Upon going to double-

1 14

precision, these constants were replaced by 10° . and 10°° ", respectively; how-

ever, this resulted in "EXP UFL" error messages. These constants were replaced
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ultimately by 10°7 and 10'8, respectively.

The program in Appendix 3 calculates ?; and ?; values from FC * ARCTA(X, Y),
where X and Y respectively are the real part and imaginary part of a zero of
the quartic and Y > 0. (For a given complex conjugate pair of solutions of
(2.2), we use the solution with positive imaginary part to get a value of ?; or
?; in (0, 12500).) In case Y > 0, ARCTA returns a number in [0, 7] so that
FC * ARCTA(X, Y) is in [0, 12500]. In case the quartic has real zeros (Y = 0),
FC * ARCTA(X, Y) has value either 0 or 12500. The program in Appendix 2 calcu-
lates f values from FC * ARCTA(- A1, DSQRT(DISCR)), where DISCR has as value the
negative of the discriminant of the quadratic (2.2) with p = 2. Thus, as noted
in Section 6, execution breaks down in the case of real zeros of the quadratic
(for which DISCR has negative values).

We assume that the amplitudes (measured in volts), At and Bt’ of the trans-
mitted signal and the interference, respectively, are in [-5, 5]. In the simu-
lation of the behavior of an NB-bit analog-to-digital converter (= ADC), the
signal S(J) in the interval [-5, 5], of length 10, is mapped into the integer

sl 1, g 1] by following X =% (ZNB / 10) x with chopping to an

interval [-2
integer and this integer is then mapped back into a floating-point real number
in [-5, 5] by x s (10/2VB) x.

The simulation results appear in Table 2 below. The number of ADC bits,
NB, takes values 16, 20, 24, 27, and 30. These values were selected because
16-bit ADCs are the most accurate ADCs presently available and 20, 24, 27, and
30 bits respectively correspond to approximately 6, 7, 8, and 9 decimal digits
of precision (due to the fact that, in a certain average sense, binary repre-

sentations of floating-point real numbers have log2(10) (= 3.32) times as many

symbols as do the corresponding decimal representations). The signal-to-
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interference ratio, SIR, is given by

2 2y -
SIR df 10 logm(At /Ai ) = 20 1°g10(At/Ai)

For economy, Table 2 does not give the simulation results for SIR < 0, which
are similar to those for SIR > 0 except that the approximation of ft (respec-
tively, fi) is better than that of fi (respectively, ft) for SIR > 0 (respec- :
tively, < 0). More specifically, for large positive (respectively, negative)

values of SIR, the arithmetic mean of the ?: (respectively, ?;3 values was much

closer to ft (respectively, fi) than was the arithmetic mean of the‘?; (respec-
tively, ?:) values to fi (respectively, ft)' As SIR approaches 0 this dispar-
ity diminishes. This is to be expected, as SIR > 0 (respectively, < 0) implies
At > Ai (respectively, Ai < At)' With a 27 (or 30) bit ADC, the predicted
frequencies, ?: and ?;, are quite accurate (error in the arithmetic mean of the
ft (respectively, fi) < 0.00001 (respectively, 0.4)) for SIR ¢ [0, 70]; for

SIR ¢ [-70, 0], this statement also holds if we interchange "ft" and "fi".

This is surprising in view of the fact that for SIR = 70 (respectively, -70),
At > 3200Ai (respectively, Ai > 3200At)'

The program in Appendix 3 calls for calculating and printing the arithme-
tic means of the predicted magnitudes of the complex solutions of (2.2) in
addition to the arithmetic means of the predicted frequencies. The arithmetic
means of the magnitudes of the complex solutions which yield the predicted
values of ft (= 10025) are all 1.00000 to five decimal places except for the
cases NB = 16 and SIR = 0, 5, 10, and 15 respectively in which the arithmetic
means are 0.99978, 0.99974, 0.99985, and 0.99993. The arithmetic means of
the magnitudes of the complex solutions which.yield the predicted values of

fi (= 10000) are all 1.00 to two decimal places except for the cases NB = 16
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and SIR = 15, 20, ..., 80, NB = 20 and SIR = 40, 45, ... , 80, and NB = 24 and

SIR = 65, 70, 75, 80.

function should be on the unit circle.

TABLE 2

These results are expected as the poles of the transfer

Arithmetic mean AMFT (respectively, AMFI) and standard deviation

SDFT (respectively, SDFI) of 100 predicted values of the Hertz-

frequency of the transmitted signal (respectively, interference)

for the signal-to-interference ratio SIR = 0.0, 5.0, 10.0, ... , 80.0

with AT = 5.0, N = 496, and the number of ADC bits NB = 16, 20, 24,

27, and 30.

NB = 16
SIR Al AMFT SDFT AMFI SDFI
80.0 0.5000E-3 10025.00001 0.14875E-4 *
75.0 0.8891E-3 10025.00000 0.55818E-4 *
70.0 0.1581E-2 10025.00001 0.62049E-4 *
65.0 0.2812E-2 10024 .99997 0.62494E-4 .
60.0 0.5000E-2 10025.00000 0.13758E-3 *
55.0 0.8891E-2 10024.99997 0.21750E-3 *
50.0 0.1581E-1 10024.99984 0.59548E-3 -
45.0 0.2812E-1 10024 .99931 0.11306E-2 =
40.0 0.5000E-1 10024.99734 0.20244E-2 *
35.0 0.8891E-1 10024.99198 0.45764E-2 9904.55117 0.12742E+1
30.0 0.1581E+0 10024.97501 0.13919E-1 9782.96934 0.51214E+1
25.0 0.2812E+0 10024.92350 0.60974E-1 9891.21543 0.20241E+1
20.0 0.5000E+0 10024.79049 0.28133E+0 9962.73950 0.34268E+0
15.0 0.8891E+0 10024.59744 0.93372E+0 9987.73936 0.70680E+0
10.0 0.1581E+1 10024.53250 0.14395E+1 9996.65213 0.12077E+1
5.0 0.2812E+1 10024.46491 0.12766E+1 9998. 76546 0.11762E+1
0.0 0.5000E+1 10024.44931 0.70598E+0 9999.60803 0.56777E+0
* AMFI is grossly in error due to the occurrence, in calculating some or all of

the predicted values of FI, of real pairs (0 and 12500), rather than complex
pairs, of solutions of (2.2).
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NB

= 20

SIR Al AMFT SDFT AMFI SDFI
80.0 0.5000E-3 10024.99999 0.31531E-5 ¥
75.0 0.8891E-3 10025.00000 0.24865E-4 »
70.0 0.1581E-2 10024.99999 0.60063E-4 *
65.0 0.2812E-2 10025.00000 0.11830E-3 =
60.0 0.5000E-2 10025.00000 0.24188E-3 10299.64857 0.90224E+1
55.0 0.8891E-2 10024.99994 0.75772E-3 9775.32456 0.10371E+1
50.0 0.1581E-1 10024.99960 0.30767E-2 9873.41665 0.10457E+1
45.0 0.2812E-1 10024.99904 0.14200E-1 9955.79372 0.18207E+1
40.0 0.5000E-1 10024.99895 0.51282E-1 9985.21355 0.87810E+0
35.0 0.8891E-1 10025.00235 0.88389E-1 9995.09369 0.48957E+0
30.0 0.1581E+0 10025.00380 0.73353E-1 9998.37917 0.24974E+0
25.0 0.2812E+0 10024.99760 0.42521E-1 9999.50158 0.74370E-3
20.0 0.5000E+0 10025.00373 0.24424E-1 9999.85185 0.78603E-1
15.0 0.8891E+0 10025.00365 0.15603E-1 9999.94350 0.40965E-1
10.0 0.1581E+1 10024.99374 0.63482E-2 9999.98351 0.88233E-2
5.0 0.2812E+1 10025.00370 0.30933E-2 9999.99406 0.13460E-1
0.0 0.5000E+1 10025.00169 0.11661E-1 9999.99412 0.69500E-2
NB = 24
SIR AT AMFT SDFT AMFI SDFI
80.0 0.5000E-3 10025.00000 0.31543E-4 9813.03648 0.39144E+1
75.0 0.8891E-3 10025.00000 0.14769E-3 9853.07626 0.14610E+1
70.0 0.1581E-2 10025.00003 0.63502E-3 9943.78711 0.83820E+0
65.0 0.2812E-2 10024.99997 0.26975E-2 9981.51822 0.83104E+0
60.0 0.5000E-2 10025.00016 0.53971E-2 9993.55141 0.11223E+0
55.0 0.8891E-2 10025.00026 0.60723E-2 9997.80849 0.74932E-1
50.0 0.1581E-1 10025.00035 0.31791E-2 9999.42349 0.34453E-1
45.0 0.2812E-1 10025.00033 0.20466E-2 9999.79271 0.20292E-1
40.0 0.5000E-1 10024.99983 0.19149E-2 9999.90712 0.10978E-2
35.0 0.8891E-1 10025.00032 0.41177E-3 9999.97580 0.67684E-2
30.0 0.1581E+0 10025.00032 0.27273E-3 9999.99337 0.38625E-2
25.0 0.2812E+0 10025.00032 0.17491E-3 9999.99774 0.21642E-2
20.0 0.5000E+0 10025.00012 0.11124E-3 9999.99949 0.46476E-2
15.0 0.8891E+0 10024.99993 0.28941E-3 10000.00030 0.36852E-3
10.0 0.1581E+1 10025.00031 0.17481E-3 10000.00010 0.39369E-3
5.0 0.2812E+1 10025.00032 0.51933E-4 9999.99995 0.22110E-3
0.0 0.5000E+1 10025.00001 0.91795E-3 9999.99985 0.31839E-3

S Lk
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NB = 27
SIR Al AMFT SDFT AMFI SDFI
80.0 0.5000E-3 10025.00001 0.54492E-3 9993.09929 0.15019E+0
75.0 0.8891E-3 10025.00004 0.54903E-3 9997.66742 0.38508E+0
70.0 0.1581E-2 10025.00003 0.24169E-3 9999.39654 0.32871E+0
65.0 0.2812E-2 10025.00000 0.28053E-3 9999.71835 0.21289E-1
60.0 0.5000E-2 10025.00003 0.21474E-3 9999.88056 0.63278E-1
55.0 0.8891E-2 10025.00004 0.12446E-3 9999.97034 0.19248E-1
50.0 0.1581E-1 10025.00000 0.15211E-3 9999.97841 0.33529E-2
45.0 0.2812E-1 10024.99999 0.41514E-4 9999.99853 0.16168E-1
40.0 0.5000E-1 10025.00000 0.11558E-3 9999.99448 0.10382E-2
35.0 0.8891E-1 10025.00000 0.10051E-3 10000.00254 0.57312E-3
30.0 0.1581E+0 10025.00003 0.12463E-3 9999.99850 0.20064E-2
25.0 0.2812E+0 10024.99999 0.28505E-4 9999.99985 0.16137E-2
20.0 0.5000E+0 10025.00000 0.10251E-3 9999.99950 0.10498E-3
15.0 0.8891E+0 10025.00000 0.95455E-4 10000.00030 0.62359E-4
10.0 0.1581E+1 10025.00000 0.11685E-3 10000.00015 0.34832E-4
5.0 0.2812E+1 10025.00002 0.62149E-4 9999.99999 0.18437E-3
0.0 0.5000E+1 10024.99998 0.24879E-4 9999.99996 0.13870E-4
NB = 30
SIR Al AMFT SDFT AMFI SDFI
80.0 0.S5000E-3 10025.00000 0.11038E-2 10006.70448 0.49575E-1
75.0 0.8891E-3 10025.00000 0.77445E-3 10002.07125 0.86676E-2
70.0 0.1581E-2 10025.00000 0.41554E-3 10000.66534 0.13332E-1
65.0 0.2812E-2 10025.00000 0.22524E-3 10000.20150 0.55550E-2
60.0 0.5000E-2 10025.00000 0.12143E-3 10000.06493 0.11716E-2
55.0 0.8891E-2 10025.00000 0.68928E-4 10000.02024 0.37293E-3
50.0 0.1581E-1 10025.00000 0.49600E-4 10000.00622 0.18744E-3
45.0 0.2812E-1 10025.00000 0.31128E-4 10000.00295 0.22967E-2
40.0 0.5000E-1 10024.99999 0.14440E-4 10000.00057 0.43003E-3
35.0 0.8891E-1 10024.99999 0.27836E-4 10000.00057 0.32625E-3
30.0 0.1581E+0 10025.00000 0.22309E-4 10000.00023 0.40442E-3
25.0 0.2812E+0 10024.99999 0.15418E-4 10000.00004 0.80662E-4
20.0 0.5000E+0 10025.00000 0.17013E-4 10000.00001 0.29009E-4
15.0 0.8891E+0 10025.00000 0.10302E-4 9999.99998 0.62105E-4
10.0 0.1581E+1 10024.99999 0.13689E-4 10000.00001 0.22865E-4
5.0 0.2812E+1 10025.00000 0.25597E-4 10000.00002 0.22428E-4
0.0 0.5000E+1 10025.00000 0.21318E-4 10000.00001 0.19165E-4
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8. CONCLUSIONS

As indicated earlier, the problem of obtaining confidence intervals for
the frequencies of the transmitted signal appears to be intractable, both for
the signal and noise case and for the signal and interference case. The case
of a signal in noise and interference was not considered.

Simulation (and partial theoretical) results in the signal in independent,
zero-mean, Gaussian noise case were disappointing. The writer is not certain
whether the Gaussian noise assumption, so common in the literature, is made
because it is realistic or because of its mathematical niceties.

Simulation in the signal and interference case indicates the need for an
ADC of accuracy at least 27 bits. At present, 16-bit ADCs are the most accu-

rate available.
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Key variables in the program in Appendix 2, the corresponding variables in

APPENDIX 1

Sections 2, 3, and 6, and their interpretations:

TSA (T)
F1 (f)
A (A)
NP (p)
N (N)

NN (N +p)

NB (NB)

SIG(K) (o)

SE@ (s k1))
P(L,3) (55 (m,N))

POCI) (49 (m,N))

AL, A2 (3], 7))
DISCR (45;-5‘2)

1
F(K) B
FC ()
AM (AM)
SD (SD)

Key variables in the program in Appendix 3, the corresponding variables in

sampling period:(in seconds);

Hertz-frequency of the transmitted signal;
amplitude (in volts) of the transmitted signal;
number of poles of the transfer function;

number of error terms in the minimization process
for determining the prediction coefficients i;'in
(3.1);

number of previous samples of the signal needed
to predict s(mT);

number of ADC bits;
standard deviation of the Gaussian noise;
value of the received signal at time JT;

coefficient of a, in equation i of the linear
system (3.3);

constant on the right in equation i of the linear
system (3.1);

coefficients in equation (2.2) with p = 2;

negative of the discriminant of the quadratic in
equation (2.2) with p = 2;

predicted value of the Hertz-frequency f of the
transmitted signal;

radian-to-Hertz conversion factor 6000 / «;
arithmetic mean of 100 ?'values;
standard deviation of 100 f values.

Sections 2, 3, and 7, and their interpretations:

TSA (T)
FC ()
FT (£,)
FI (£,)

sampling period (in seconds);
radian-to-Hertz conversion factor 12500/ r;
Hertz-frequency of the transmitted signal;
Hertz-frequency of the interference;




AT (A

AL (A))

NP (p)

N O(N)

NN (N +p)
NB (NB)
SIR (SIR)
FONE  (£,)
FTWO (?;)

amplitude (in volts) of the transmitted signal;
amplitude (in volts) of the interference;
number of poles of the transfer function;

number of error terms in the minimization process
for determining the prediction coefficients 53 in
(3.1);

number of previous samples of the signal needed
to predict s(mT);

number of ADC bits;
signal-to-interference ratio (in decibels);

predicted value (in Hertz) of the frequency of the
transmitted signal;

predicted value (in Hertz) of the frequency of the
interference.
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APPENDIX 2

MAXIMUM ENTROPY SPECTRAL DEMODULATION
SIGNAL AND (GAUSSIAN) NOISE CASE

DOUBLE PRECISION PI,TSA,TPI,A,AM,SD,F1,FC,R1(1300),R2(1300)
DOUBLE PRECISION V1,V2,S1,W(1300),v11(1300),v21(1300),SIG(7)
DOUBLE PRECISION X1(2600),Wl,FJ,TC,TS,U,S(1102),PNB,DV,DVI,X
DOUBLE PRECISION P(2,2),PO0(2),DEL,DELl,DEL2,Al,A2,DISCR,F(1102)
COMMON/S AMP/S
COMMON/PHI/P
COMMON/ P HO/ PO
COMMON/F REQ/F |
COMMON/RAD/PI
DATA PI,TSA/3.14159265358979324D0,83.3333333333333333D-6/
DATA NP,A,AM,SD,F1/2,1.0D00,0.0D0,0.0D0,3250.0D0/
DATA SIG(l),s1G(2),SIG(3),S1G(4)/0.001D0,0.01D0,0.05D0,0.1D0O/
DATA SIG(5),S81G(6),SI1G(7)/0.2D0,0.3D0,0.5D0/
TPI=6.283185307179958648
FC=6000.0D0/PI
GENERATE GAUSSIAN NOISE (0160-0360)
DO 10 J=1,1300
Rl (J)=RANDT(1.0)
DO 20 J=1,1300
R2 (J)=RANDT (1.0)
1=1
DO 30 J=1,1300
V1=2.0DO0*R1l (J)=-1.0D0O
v2=2.0D0*R2 (J)-1.0D0O
Sl=Vi*v1+V2*ry2
IF(S1.GE.1.0D0) GO TO 30
W(I)==-2.0D0*DLOG(S1l)/S1
V1il(1)=V1
V21L1(1)=Vv2
I=1+1
CONTINUE
L=I-1
LOOP TO CALCULATE AND PRINT MEAN AND STANDARD
DEVIATION OF 100 PREDICTED FREQUENCIES FOR
VARIOUS VALUES OF SIGMA
DO 40 Kl=1,7
DO 50 J=1,L
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50
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Z2=SIG(KLl)*DSQRT (W(J))
X1 (2*3=-1)=V1l(J)*z
X1(2*J)=V21(J)*2

CALCULATE TRANSMITTED SIGNAL PLUS NOISE
Wl=F l*TPI
DO 60 J=1,1102
FJ=J
TC=FJ*TSA
TS=W1*TC
U=A*DSIN(TS)

S(J)=U+X1(J)

SIMULATE ANALOG-TO-DIGITAL CONVERSION OF SIGNAL
DO 45 NB=16,28,12
WRITE(6,1) NB
FORMAT(lX, "NUMBER OF BITS = ",I5/)

NBP=2* *NB
PNB=NBP
DV=10.0D0/PNB
DVI=PNB/10.0DO
DO 70 J=1,1102
X=S (J)

X=X*DVI

KP=X

X=KP

S (J)=X*DV

LOOP TO VARY N (= THE NUMBER OF ERROR TERMS IN

THE MINIMIZATION OF SECTION 3)
DO 55 N=2,1000,499
NN=NP+N
KL=NN+1
KU=KL+99

LOOP TO GENERATE 100 (= KU~KL+l) PREDICTED FREQUENCIES
DO 80 K=KL,KU
KK=K

CALCULATE COEFFICIENTS FOR LINEAR SYSTEM (3.2)

USING SUBROUTINE COV (COVARIANCE METHOD)
CALL COV{NP,NN,KK)

SOLVE LINEAR SYSTEM (3.2) BY CRAMER’S RULE
DEL=P(1,1)*P(2,2)-P(l,2)*P(2,1)
DELLl=P(1,2)*P0O(2)=-P(2,2)*PO(1)

DEL2=P (2,1)*PO(1)=-P(l,1)*P0O(2)
Al=DEL1l/DEL
A2=DEL2/DEL

SOLVE EQUATION (2.2) BY QUADRATIC FORMULA
DISCR=4,0D0O*A2-A1*Al
IF(DISCR.GE.0.0D0) GO TO 80
WRITE(6,2) K
FORMAT (1X, "DISCR NEG AT STEP ",I8)

CALCULATE PREDICTED FREQUENCY BY USE OF (6.4)
F(K)=FC*ARCTA(=-Al,DSQRT (DISCR))
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40
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13

14
12

CALCULATE AND PRINT MEAN AND STANDARD DEVIATION
OF PREDICTED FREQUENCIES

CALL STATS (AM,SD,KL,KU)

WRITE(6,3) N,AM,SD

FORMAT(1X,15,2G24.8/)

CONTINUE

CONTINUE

CONTINUE

STOP

END

SUBROUTINE COV(NP,NN,LP)

DOUBLE PRECISION s$(1102),P(2,2),P0(2),B
COMMON/S AMP/ S
COMMON/PHI1/P
COMMON/P HO/ PO
L=LP-1
NI=NN-NP
NL=LP=-NI
B=0.0D0
LOOPS TO CALCULATE PHI(J,J), l<=J<=NP
DO 10 J=NL,L
B=R+S (J)*S (J)
Do 11 J=1,NP
K=LP~-J
I=NL-J
B=B+S (I)*S (I)=-S(K)*S (K)
P(J,J)=8
DO 12 KK=1,NP
B=0.0D0
LOOP TO CALCULATE PHI (0,KK), l<=KK<=NP / STORE IN PO (KK)
DO 13 J=1,NI
N=LP-J
M=N-KK
B=B+S (N)*S (M)
PO (KK) =B
LOOP TO CALCULATE PHI(I,K) FOR I NOT = K
IF (KK.EQ.NP) GO TO 12
DO 14 J=1,NP-KK
1=J
K=KK+J
N=LP=J
M=N=KK
Nl=NL=-J
M1l=N1-KK
B=B+S (N1)*S (M1)=S (N)*S (M)
P(I,K)=B
P(K,I)=8n
CONTINUE
RETURN
END
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SUBROUTINE STATS (AM,SD,KL,KU)

STATS CALCULATES THE MEAN AND STANDARD DEVIATION
OF KU-KL+1 PREDICTED FREQUENCIES P (J)

DOUBLE PRECISION F(l1102),S1,S2,RM,AM,SD

COMMON/F REQ/F

$1=0.0D0

$2=0.0D0

RM=KU-KL+1

DO 10 J=KL,KU

S1=S 1+F (J)

AM=S 1/RM

DO 20 J=KL,KU

§2=S2+ (F (J)-AM)* (F (J)=-AM)

SD=DSQRT (S2/RM)

RETURN

END

FUNCTION ARCTA (X,Y)

SUBPROGRAM TO CALCULATE ARCTANGENT
VALUES IN =PI TO PI

DOUBLE PRECISION PI,HPI,X,Y,ARCTA

COMMON/RAD/P1

HPI=1.57079632679489662D0

IF(X) 1,2,3

ARCTA=DATAN(Y/X)+PI

RETURN

ARCTA=HPI

RETURN

ARCTA=DATAN (Y/X)

RETURN

END
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APPENDIX 3

MAXIMUM ENTROPY SPECTRAL DEMODULATION
SIGNAL AND INTERFERENCE CASE

DOUBLE PRECISION PI,TPI,TSA,FC,AM,SD,AT,AI,FT,FI,SIR,WT,WI
DOUBLE PRECISION FJ,TC,TST,TSI,S(500),PNB,DV,DVI,X,Y,A(Ll0)
DOUBLE PRECISION P(4,4),PO(4),RR(5),CR(5),B(5),AUX (4),R(4)
DOUBLE PRECISION TEMP,RMAGL(100),RMAG2(100),FONE(100)
DOUBLE PRECISION FTWO(100),Fl11(2),R11(2)
COMMON/SAMP/ S
COMMON/PHI/P
COMMON/ P HO/ PO
COMMON/F REQ/FONE, FTWO
COMMON/MAG/RMAGLl, RMAG2
COMMON/S IME/A,R,AUX
COMMON/BRC/B,RR,CR
DATA AM,SD,AT,FT,F1/0.0D0,0.0D0,5.0D0,10025.0D0,10000.0D0/
DATA NP,N/4,496/
PI=3.14159265358979324
TPI=6.28318530717958647
TSA=1.0D0/25000.0D0
FC=12500.0D0/PI
NN=NP+N
KL=NN+1
LOOP TO GIVE ‘SIR VALUES 60,55,50, ... ,5,0
SIR=60.0D0
WRITE (6,201) SIR
FORMAT(1X,"SIR =",Gl17.8//)
AI=AT*10.0DO**(-SIR/20.0DO0)
WRITE(6,111) AI
FORMAT(1lX,"AI =",Gl7.8//)
WT=FT*TPI
WI=FI*TPI
LOCP TO CALCULATE 100 PREDICTED VALUES OF FT AND OF FI
DO 33 K=1,100
DO 34 J=1,500
FJ=J+500* (K-1)
TC=FJ*TSA
TST=WT*TC
TSI=WI*TC
CALCULATE RECEIVED SIGNAL FROM (7.1)
S(J)=AT*DSIN(TST)+AI*DSIN(TSI)
CONT INUE
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SIMULATE 16-BIT ANALOG-TO-DIGITAL CONVERSION OF SIGNAL
NB=16
NBP=2%**NB
PNB=NBP
DV=10.0D0/PNB
DVI=PNB/10.0D0O
DO 15 J=1,500
X=S (J)
X=X*DVI
KP=X
X=KP i
S (J)=X*DV 4
CALCULATE COEFFICIENTS FOR LINEAR SYSTEM (3.2)
USING SUBROUTINE COV (COVARIANCE METHOD)
CALL COV(NP,NN,KL)
L=0
po 1 J=1,NP .
po 9 1=1,J
LL=L+I
A(LL)=P(I,J)
CONT INUE
L=L+J :
R(J)=-PO (J) !
CONTINUE '
IER=0
SOLVE LINEAR SYSTEM (3.2) USING HONEYWELL SUBROUTINE LINSS
CALL LINSS(NP,IER)
IF(IER) 2,3,5
NQ=NP-IER
WRITE (6,202) NQ,IER
FORMAT (1X, "DEGENERATE MATRIX OF DEGENERACY",I8," RANK =",I8)
GO TO 33 :
WRITE(6,203)
FORMAT (1lX, "MATRIX POSSIBLY SINGULAR")
GO TO 33
ASSIGN ELEMENTS IN SOLUTION 4-TUPLE OF SYSTEM (3.2)
(DENOTED BY "R(J)" IN LINSS IN PLACE OF "A(J)" IN (3.2)) J
TO B(J) WITH B(5)=1,B(4)=R(1),B(3)=R(2),B(2)=R(3), ]
B(l)=R(4) AND SOLVE THE EQUATION B(5)*2Z**4 + B(4)*z%**3
+ B(3)*zZ**2 + B(2)*Z + B(l) = 0 OF THE FORM (2.2)
BY USE OF HONEYWELL SUBPROGRAM ZORP2 WHICH CONSISTS
OF SUBROUTINES DOWNH,GRAD,MTALGD,DIV, AND POLY
NAC=NP+1
B(NAC)=1.0D0
po 7 J=1,NP
B(J)=R (NAC-J)
CALL DOWNH(B,NP, RR,CR)
I=1
DO 44 L=1,NP
IF (CR(L).LT.0.0D0) GO TO 44
X=RR(L)
Y=CR(L)
RL1(I)=DSQRT (X*X+Y*Y)




44

43

33

400

888
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11

CALCULATE PREDICTED FREQUENCY
Fl1(I)=FC*ARCTA(X,Y)
I=I+1
CONT INUE
IF(FLL(l).LE.F11(2)) GO TO 43
TEMP=F1l1 (1)
FL1(l)=Fl1l(2)
Fl1l(2)=TEMP
TEMP=R11 (1)
R11(1l)=R1l1(2)
R11(2)=TEMP
RMAGL(K)=R11 (1)
RMAG2(K)=R1l1l (2)
FONE(K)=F1l1l (1)
FTWO(K)=F11(2)
CONTINUE
CALCULATE AND PRINT MEAN AND STANDARD DEVIATION
OF 100 PREDICTED VALUES OF RMAGLl,RMAG2,Fl, AND F2
CALL STATS (AM,SD,RMAGL)
WRITE(6,400) AM,SD
FORMAT(1X,2D25.18)
CALL STATS (AM,SD,RMAG2)
WRITE(6,400) AM,SD
CALL STATS (AM,SD,FONE)
WRITE(6,400) AM,SD
CALL STATS (AM,SD,FTWO)
WRITE(6,400) AM,SD
WRITE(6,888)
FORMAT(1X,//)
SIR=SIR-5.0D0
IF (SIR.LT.0.0D0) STOP
GO TO 11
END

SUBROUTINE COV(NP,NN,LP)

COV WAS WRITTEN BY CAPT. KENNETH WILSON OF RADC TO
IMPLEMENT THE COVARIANCE METHOD OF LINEAR PREDICTION
(SEE MAKHOUL (2, P. 564))

DOUBLE PRECISION S(500),P(4,4),P0O(4),A

COMMON/SAMP/S

COMMON/PHI/P

COMMON/PHO/ PO

L=LP-1

NI=NN-NP

NL=LP-NI

A=0.0D0

LOOPS TO CALCULATE PHI(J,J), l<=J<=NP

DO 10 J=NL,L

A=A+S (J)*sS (J)

po 11 J=1,NP

K=LP-J

I=NL-J

A=A+S (I)*S (I)=S (K)*S (K)

P(J,J)=A




0

000000000000

DO 12 KK=1,NP
A=0,0D0
LOOP TO CALCULATE PHI (0,KK), 1<KK<NP / STORE IN PO(KK)
DO 13 J=1,NI
N=LP-J

M=N~KK
13 A=A+S (N)*S (M)

PO (KK) =A

LOOP TO CALCULATE PHI (I,K) FOR I NOT = K

IF(KK.EQ.NP) GO TO 12

DO 14 J=1,NP-KK

1=J

K=KK+J

N=LP-J

M=N-KK

N1=NL-J

ML=N1-KK

A=A+S (NL)*S (M1)-S (N)*S (M)

P(I,K)=A
14 P(K,I)=A
12 CONTINUE

RET URN

END

SUBROUTINE LINSS(M,IER)

LINSS IS A DOUBLE PRECISION VERSION OF THE HONEYWELL
SUBROUTINE LINSS FOR SOLVING A LINEAR SYSTEM WITH

SYMMETRIC COEFFICIENT MATRIX. LINSS USES GAUSS ELIMINATION

WITH PIVOTING IN THE MAIN DIAGONAL ONLY, TO PRESERVE
SYMMETRY. IER IS AN ERROR RETURN AS FOLLOWS: IER=0
INDICATES NO ERROR; IER=-1 INDICATES NO RESULT AS NP<0
OR A PIVOT ELEMENT WAS ZERO DURING ELIMINATION; IER=K
IS A WARNING OF POSSIBLE LOSS OF SIGNIFICANCE (OF L
SIGNIFICANT DIGITS IF EPS - 10**(-L)) AT ELIMINATION
STEP K+1 ANL , WITH WELL-CONDITIONED A AND APPROPRIATE
EPS, THAT A MAY HAVE A RANK OF K.
DOUBLE PRECISION A(l0),R(4),AUX(4),PIV,TB,TOL,PIVI,EPS
COMMON/SIME/A,R,AUX
EPS=1.0D-18
IF(M.LE.O0O) GO TO 24
SEARCH FOR PIVOT
1 IER=0
PIV=0.0D0
L=0
DO 3 K=1,M
L=L+K
TB=DABS (A(L))
IF(TB-PIV) 3,3,2
2 PIV=TB
I=L
J=K
3 CONTINUE
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£ TOL=EPS*PIV
5 LST=0
LEND=M-1
c ELIMINATION LOOP
DO 18 K=1,M
IF(PIV) 24,24,4
IF(IER) 7,5,7
IF(PIV-TOL) 6,6,7
IER=K-1
LT=J-K
LST=LST+K
PIVOT ROW REDUCTION AND ROW INTERCHANGE IN RIGHT SIDE R
PIVI=1.0DO/A (I)
TB=PIVI*R (J)
R(J)=R (K)
R(K)=TB
IF(K-M) 9,19,19
ROW AND COLUMN INTERCHANGE AND PIVOT ROW REDUCTION A
PIVOT COLUMN SAVED IN AUX
LR=LST+ (LT* (K+J-1) )/2
LL=LR
L=LST
DO 14 II=K,LEND
L=L+I1I
LL=LL+1
IF(L-LR) 12,10,11
A(LL)=A (LST)
TB=A (L)
GO TO 13
LL=L+LT
TB=A (LL)
A(LL)=A (L)
AUX (II)=TB
A(L)=PIVI*TB
A (LST)=LT
ELEMENT REDUCTION AND SEARCH FOR NEXT PIVOT
PIV=0.0DO
LLST=LST
LT=0
DO 18 II=K,LEND
PIVI==-AUX (II)
LL=LLST
LT=LT+1
DO 15 LLD=I1I,LEND
LL=LL+LLD
L=LL+LT
A(L)=A(L)+PIVI*A (LL)
LLST=LLST+1II
LR=LLST+LT
TB=DABS (A(LR))
IF(TB-PIV) 17,17,16
PIV=TB
I=LR

Nouvas




17
18

19
20

21

23
24

J=I1+1

LL=II+1

R(LL)=R(LL)+PIVI*R (K)
BACK SOLUTION AND INTERCHANGE

IF(LEND) 24,23,20

I1I=M

DO 22 I=2,M

LST=LST-II

II=1I-1

L=A (LST)+0.5D0

TB=R(II)

LL=II

K=LST

DO 21 LT=II,LEND

LL=LL+1

X=K+LT

TB=TB-A (K)*R (LL)

K=II+L

R(II)=R(K)

R (K)=TB

RETURN

IER=-1

RET URN

END

SUBROUTINE DOWNH (A,NAR, RR,CR)

DOUBLE PRECISION A(10),RR(5),CR(5).Q(10),B(3)

DOUBLE PRECISION ANPP,DISC,X,Y,C
J=0

N=NAR

NPL1=N+1

ANPP=A (NPL1)

DO 102 I=1,NPL1

IF(A(I)) 103,102,103

CONT INUE

C=DABS(A(I)/A (NPL1l))

LU=120

LL==-120

IF(C-2.0D0**LU) 100,100,101
IF(C-2.0DO**LL) 101,105,105
NAR= -NAR

GO To 5001

II=(LU+LL)/2
IF(C-2.0DO**11) 110,110,109
LL=II

GO TO 111

LU=II

IF(LU-LL=-1) 5001,112,105
IB=II/N

IF(IB) 114,120,114

DO 115 1=1,NPLL

I11=1-1
A(I)=A(I)*(2.0DO**(II*IB))
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120
121
201
' 206
‘ 211

221

301
401
, 421
3 431
441

461

501

521

541

601

1011

1021

1041
1061
1071
1081

2001

DO 121 J1=1,NPLL
A(J1)=A(J1l)/A (NPL1)
IF(N) 2001,2001,206
IF(A(Ll)) 301,211,301
J=J+1

RR(J)=0.0DO
CR(J)=0.0D0O

DO 221 J1=1,N
A(JLl)=A(J1l+1)

N=N-1

GO TO 201

IF(N-2) 601,501,401
CALL GRAD(A,N,X,Y)
IF(DABS(Y)-DABS (X*1.0D-8)) 431,431,441
Y=0.0DO

J=J+1

RR(J)=X

CR(J) =Y

IF(Y) 461,1021,461
J=J+1

RR(J)=X

CR(J)=-Y

GO To 1011
DISC=A(2)**2-4.0D0*A (1)
IF(DISC) 521,541,541
Y=DSQRT (-DISC)/2.0D0
X==-A(2)/2.0D0

GO TO 421

J=J+1
RR(J)=(-A(2)+DSQRT(DISC))/2.0D0
CR(J)=0.0D0O

GO TO 1021

J=J+1

RR(J)==-A(1)
CR(J)=0.0DO

GO TO 2001
B(l)=X**2+y**2
B(2)=-2.0D0*X
B(3)=1.0D0

NB=2

GO TO 1041
B(1l)==RR(J)
B(2)=1.0D0

NB=1

CALL DIV(A,B,N,NB,Q)
DO 1061 Jl=1,N
A(J1l)=Q(Jl)

IF (CR(J)) 1081,1071,1081
N=N-1

GO TO 201

N=N-2

GO TO 201

IF(IB) 2002,2005,2002
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2002

2000
2005

2011

2021
2041

2061

2081

2091
3001

3011
5001

101

201
221

pO 2000 I=1,NAR
RR(I)=RR(I)*(2.0DO**(IB))
CR(I)=CR(I)*(2.0DO0O**(IB))
NPLl=NAR+1

DO 2011 1=2,NPl
A(I)=0.0DO

A(l)=1.0D0

NA=0

J=1

IF(CR(J)) 2041,2061,2041
NB=2

B(3)=1.0D0
B(2)=-2.0DO0*RR(J)
B(L)=RR(J)**2+CR(J)**2
J=J+2

GO TO 2081

NB=1

B(2)=1.0D0

B(1l)=-RR(J)

J=J+1

CALL MTALGD(A,NA,B,NB,Q)
NA=NB+NA

NAPLl=NA+1

DO 2091 1=1,NAPLL
A(I)=Q(I)

IF (NA-NAR) 2021,3001,3001
DO 3011 J2=1,NPL1
A(J2)=A(J2)*ANPP

RETURN

END

SUBROUTINE GRAD(A,N,XZ,YZ)

DOUBLE PRECISION A(10),X(3),Y(3),RP(3),CP(3),RHO(3),PHI(3)
DOUBLE PRECISION ABSP(3),PR(3),PC(3),PI,X2,Y2,RHOZ,PHIZ,SU,U
DOUBLE PRECISION PSI,TOP,BOT,COSI,SINE,DZ,ABSPZ,PRZ,PCZ,R2
DOUBLE PRECISION CZ,THETA,DTHETA,RHOS,PHIS

PI=3.14159265358979324
MTST=1

X2=0.0D0

Yz=1.0DO

DzZ=2.0D0

RHOZ=1.0D0
PHIZ2=P1/2.0D0

CALL POLY(N,A,RZ,CZ,PRZ,PCZ,RHOZ,PHIZ)

SU=DSQRT (PRZ* *2+PC2Z* *2)
ABSPZ=DSQRT (RZ* *2+CZ**2)
U=2.0DO*ABSPZ*SU
PSI=DATAN(U)
TOP=RZ*PCZ-C2Z*PR2Z

BOT==- (RZ*PRZ+CZ*PC2)
THETA=ARCTA (BOT, TOP)
COSI=DCOS (THETA+PHIZ)
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300
301
321
351
401

421
431
441
443
445

451
461

501

521

561

563
565

SINE=DSIN(THETA+PHIZ2) ?
IF(ABSPZ) 300,5001,300

IF(SuU) 301,501,301 ]
IF (RHOZ) 321,401,321

IF(ABSP2/ (RHOZ*SU)=-1.0D-8) 5001,5001,701 ]
IF (ABSPZ/ (RHOZ*SU)-10.0DO**(~-MTST)) 801,801,401
DZ=D2/8.0D0

IM=0

DO 431 1=1,3

D2=2.0D0*DZ

X(I)=XZ+D2*COSI

Y(I)=YZ+DZ*SINE

RHO(I)=DSQRT (X(I)**2+Y(I)**2)
PHI(I)=ARCTA(X(I),Y(I))

CALL POLY(N,A,RP(I),CP(1),PR(I),PC(I),RHO(I),PHI(I))
ABSP(I)=DSQRT(RP(I)**2+CP(I)**2) 1
IF (ABSPZ-ABSP(I)) 431,431,421 |
ABSPZ=ABSP(I)

IM=1I

CONT INUE

IF(IM) 441,441,461

DZ=DZ/8.0D0

IF (RHOZ) 443,445,443

IF(DZ/RHOZ-1.0D-8) 451,451,401

IF(D2-1.0D-8) 451,451,401

IF(SuU-ABSpPz) 501,501,5001

D2=(2.0D0**(IM-2))*D2

X2=X(IM)

YZ=Y(IM)

PHIZ=PHI(IM)

PRZ=PR(IM)

PCZ=PC (IM)

RHOZ=RHO (IM)

RZ=RP(IM)

CZ=CP(IM)

GO TO 221

Dz=1.0DO

DTHETA=PI/ 10.0D0

THETA=0.0D0

DO 561 I=1,20

THETA=T HETA+ DTHETA

XS=XZ+DZ*DCOS (PHIZ+THETA)

YS=YZ+DZ*DSIN(PHI Z+THETA)

RHOS=DSQRT (XS* *2+YS* *2)

PHIS=ARCTA (XS,Y¥S)

CALL POLY(N,A,RS,CS,PRS,PCS,RHOS,PHIS)

ABSP(l)=DSQRT (RS**2+CS**2)

IF (ABSPZ-ABSP(l)) 561,561,601

CONTI NUE

D2=D2/2.0D0

IF(RHOS) 563,565,563

IF(DZ/RHOS-1.0D-8) 5001,5001,521

IF(D2~1.0D-8) 5001,5001,521




601 XZ=XS
YZ=YS
PHIZ=PHIS
RHOZ=RHOS
ABSPZ=ABSP(l)
PRZ=PRS
PCZ=PCS
RZ=RS
cz=CS
GO TO 221
701 IF(PSI-1.0D-7) 711,711,351
711 IF(SU-ABSPZ) 501,501,351
801 RHO(1l)=RHOZ+BOT/SU**2
IF (RHO(Ll)) 901,901,816
816 PHI(Ll)=PHIZ+TOP/ (RHOZ*SU**2)
821 cALL POLY(N,A,RZ,CZ,PRZ,PCZ,RHO(1l),PHI(l))
ABSP(1)=DSQRT (RZ**2+CZ**2)
IF(ABSP(l)-ABSPZ) 851,881,881
841 XZ=RHOZ*DCOS (PHIZ)
YZ=RHOZ*DSIN(PHIZ)
GO TO 5001
851 RHOZ=RHO (1)
ABSPZ=ABSP (1)
PHI Z=PHI (1)
TOP=RZ*PCZ-CZ*PRZ
BOT==~ (RZ*PRZ+C2*PC2)
SU=DSQRT (PRZ**2+PC2* *2)
IF(su) 855,501,855
855 U=2.0D0*ABSPZ*SU
PSI=DATAN(U)
IF (ABSPZ/ (RHOZ*SU)-10.0D0O**(~-MTST)) 861,861,901
861 IF (ABSPZ/(RHOZ*SU)~-1.0D-8) 841,841,871
871 1IF(PSI-1.0D-7) 881,881,801
881 IF(SU-ABSPZ) 501,501,901
901 DZ=ABSPZ/SU
X2=RHOZ*DCOS (PHIZ)
YZ=RHOZ*DSIN(PHIZ)
MT ST=MTST+1
GO TO 201
5001 RETURN
END

SUBROUTINE MTALGD(AARG,NA, BARG,NB,C)

DOUBLE PRECISION AARG(10),BARG(10),C(10),A(10),B(10),TEMP
1 NAPLl=NA+1
DO 21 Jl=1,NAPLL
21 A(JL)=AARG(JL)
NBPL1=NB+1
DO 41 Jl1=1,NBPLI1
41 B(JL1l)=BARG(J1)
NCPL1=NAPLL+NBPLl=-1
DO 91 Jl=1,NCPL1




TEMP=0.0D0

Do 81 J2=1,J1

IF(J2-NAPLL) 61,61,81
61l N2=J1-J2+1

IF(N2-NBPLLl) 71,71,81
71 TEMP=TEMP+A (J2)*B(N2)
81 CONTINUE

C(JLl)=TEMP
91 CONTINUE

RETURN

END
C

SUBROUTINE DIV (A,B,NA,NB,Q)
C

' DOUBLE PRECISION A(10),B(l10),Q(l0),TEMP
g 3 I l=NA-NB+1
: PO 6L pi=srapt
61 Q(J1)=0.0DO
101 KKMAX=NA-NB+1
DO 391 KK=1,KKMAX
K=KK-1
201 TEMP=0.0DO
i IF(K-1) 301,211,211
1 211 po 291 JJ3=1,K
' J=JJ-1
I1=NB-K+J
IF(Il}) 291,223,221
221 I2=NA-NB-J
TEMP=TEMP+B(Il+1l)*Q(I2+1)
291 CONTINUE
301 ILl=NA-NB-K
I2=NA-K
391 Q(Il+1)=A(I2+1)-TEMP
5001 RETURN
END

SUBROUTINE POLY(N,A,R,C,PR,PC,RHO,PHI)

DOUBLE PRECISION A(l0),R,C,PR,PC,RHO,PHI,V1l,V2,Wl,W2,Tl
IF (RHO) 10,5,10
5 R=A(1)
c=0.0D0
PR=A (2)
PC=0.0D0
RET URN
10 v1=1.0DO
v2=0.0D0
R=A (1)
c=0.0D0
PR=0.0DO
PC=0.0D0
WL=RHO*DCOS (PHI)
W2=RHO*DSIN(PHI)
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AD=A075 157

UNCLASSIFIED

STATE UNIV OF NEW YORK COLL AT ONEONTA DEPT OF MATHEM==ETC F/G 17/%
MAXIMUM ENTROPY SPECTRAL DEMODULATOR INVESTIGATION.(U)
AUG 79 R 6 VAN METER F30602=75=C=0122

RADC=TR=79-209 NL
END

DATE
FILMED

[1-79

DOC




nnn

aonon

20

5001

10

20

]

NN=N+1

po 20 1I=2,NN

T1=Wl*V1-W2*V2

V2=W2*V1+W1l*V2

v1l=T1

R=R+A (I)*V1

C=C+A (I)*V2

PR=PR+A (I)*(I-1)*Vl ;
PC=PC+A(I)*(I-1)*V2 !
PR=PR/RHO

PC=PC/RHO

RETURN

END

FUNCTION ARCTA(X,Y)

SUBPROGRAM TO COMPUTE ARCTANGENT
VALUES IN INTERVAL -PI TO PI
DOUBLE PRECISION PI,HPI,X,Y,ARCTA
PI=3.14159265358979324
HPI=1.57079632679489662
IF(X)1,2,3
ARCTA=DATAN(Y/X)+PI*DSIGN(1.0D0,Y)
RETURN £
ARCTA=DATAN(Y/X) i
RET URN L
IF(Y) 4,5,6
ARCTA=-HPI
RET URN I
ARCTA=0.0DO ;
RETURN ?
ARCTA=HPI |
RET URN :
END

SUBROUTINE STATS (AM,SD,G)

STATS CALCULATES MEAN AND STANDARD DEVIATION
OF A SET OF 100 NUMBERS
DOUBLE PRECISION G(100),S1,S2,RM,AM,SD |3
COMMON/F REQ/FONE ,FTWO :
COMMON/MAG/RMAG1, RMAG2
§1=0.0D0
§2=0.0D0
RM=100.0D0
po 10 J=1,100
S1=s1+G (J)
AM=S 1/RM
po 20 J=1,100
§2=52+(G(J)~AM)* (G(J)=AM)
SD=DSQRT (S2/RM)
RETURN
END
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